General Information of Drug Off-Target (DOT) (ID: OTIDXQ9F)

DOT Name Tricarboxylate transport protein, mitochondrial (SLC25A1)
Synonyms Citrate transport protein; CTP; Mitochondrial citrate carrier; CIC; Solute carrier family 25 member 1; Tricarboxylate carrier protein
Gene Name SLC25A1
Related Disease
Mitochondrial disease ( )
D,L-2-hydroxyglutaric aciduria ( )
Myasthenic syndrome, congenital, 23, presynaptic ( )
Obsolete presynaptic congenital myasthenic syndrome ( )
UniProt ID
TXTP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00153
Sequence
MPAPRAPRALAAAAPASGKAKLTHPGKAILAGGLAGGIEICITFPTEYVKTQLQLDERSH
PPRYRGIGDCVRQTVRSHGVLGLYRGLSSLLYGSIPKAAVRFGMFEFLSNHMRDAQGRLD
STRGLLCGLGAGVAEAVVVVCPMETIKVKFIHDQTSPNPKYRGFFHGVREIVREQGLKGT
YQGLTATVLKQGSNQAIRFFVMTSLRNWYRGDNPNKPMNPLITGVFGAIAGAASVFGNTP
LDVIKTRMQGLEAHKYRNTWDCGLQILKKEGLKAFYKGTVPRLGRVCLDVAIVFVIYDEV
VKLLNKVWKTD
Function
Mitochondrial electroneutral antiporter that exports citrate from the mitochondria into the cytosol in exchange for malate. Also able to mediate the exchange of citrate for isocitrate, phosphoenolpyruvate, cis-aconitate and to a lesser extend cis-aconitate, maleate and succinate. In the cytoplasm citrate is important in the regulation of glycolysis through a feedback mechanism and in the production of acetyl-CoA which is needed for the synthesis of fatty acids, sterols, prostaglandins, dolichol and coenzyme Q (CoQ). Required for proper neuromuscular junction formation (Probable).
Reactome Pathway
Fatty acyl-CoA biosynthesis (R-HSA-75105 )
Gluconeogenesis (R-HSA-70263 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Mitochondrial disease DISKAHA3 Definitive Autosomal recessive [1]
D,L-2-hydroxyglutaric aciduria DISYBXFL Strong Autosomal recessive [2]
Myasthenic syndrome, congenital, 23, presynaptic DIS2MO09 Strong Autosomal recessive [3]
Obsolete presynaptic congenital myasthenic syndrome DISCATK3 Supportive Autosomal dominant [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tricarboxylate transport protein, mitochondrial (SLC25A1). [5]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tricarboxylate transport protein, mitochondrial (SLC25A1). [22]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [6]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [7]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [8]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [12]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [13]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [14]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [15]
Selenium DM25CGV Approved Selenium increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [16]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [17]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [18]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [19]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [20]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [16]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [6]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Tricarboxylate transport protein, mitochondrial (SLC25A1). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria. Am J Hum Genet. 2013 Apr 4;92(4):627-31. doi: 10.1016/j.ajhg.2013.03.009.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol. 2005 Oct;79(2):108-17.
8 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
15 Epigenetic mechanisms and Sp1 regulate mitochondrial citrate carrier gene expression. Biochem Biophys Res Commun. 2008 Nov 7;376(1):15-20. doi: 10.1016/j.bbrc.2008.08.015. Epub 2008 Aug 13.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
18 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
19 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
20 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
21 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
24 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.