General Information of Drug Off-Target (DOT) (ID: OTUGDEUV)

DOT Name Monocarboxylate transporter 14 (SLC16A14)
Synonyms MCT 14; Solute carrier family 16 member 14
Gene Name SLC16A14
UniProt ID
MOT14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MYTSHEDIGYDFEDGPKDKKTLKPHPNIDGGWAWMMVLSSFFVHILIMGSQMALGVLNVE
WLEEFHQSRGLTAWVSSLSMGITLIVGPFIGLFINTCGCRQTAIIGGLVNSLGWVLSAYA
ANVHYLFITFGVAAGLGSGMAYLPAVVMVGRYFQKRRALAQGLSTTGTGFGTFLMTVLLK
YLCAEYGWRNAMLIQGAVSLNLCVCGALMRPLSPGKNPNDPGEKDVRGLPAHSTESVKST
GQQGRTEEKDGGLGNEETLCDLQAQECPDQAGHRKNMCALRILKTVSWLTMRVRKGFEDW
YSGYFGTASLFTNRMFVAFIFWALFAYSSFVIPFIHLPEIVNLYNLSEQNDVFPLTSIIA
IVHIFGKVILGVIADLPCISVWNVFLLANFTLVLSIFILPLMHTYAGLAVICALIGFSSG
YFSLMPVVTEDLVGIEHLANAYGIIICANGISALLGPPFAGWIYDITQKYDFSFYICGLL
YMIGILFLLIQPCIRIIEQSRRKYMDGAHV
Function Proton-linked monocarboxylate transporter. May catalyze the transport of monocarboxylates across the plasma membrane.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [3]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Monocarboxylate transporter 14 (SLC16A14). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [7]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [7]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [8]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [9]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [10]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Monocarboxylate transporter 14 (SLC16A14). [11]
Ethanol DMDRQZU Approved Ethanol increases the expression of Monocarboxylate transporter 14 (SLC16A14). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [9]
Fenfluramine DM0762O Phase 3 Fenfluramine decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [13]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [14]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Monocarboxylate transporter 14 (SLC16A14). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Monocarboxylate transporter 14 (SLC16A14). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Monocarboxylate transporter 14 (SLC16A14). [10]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Monocarboxylate transporter 14 (SLC16A14). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Monocarboxylate transporter 14 (SLC16A14). [5]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
11 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
12 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
13 Fenfluramine-induced gene dysregulation in human pulmonary artery smooth muscle and endothelial cells. Pulm Circ. 2011 Jul-Sep;1(3):405-18. doi: 10.4103/2045-8932.87310.
14 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.