General Information of Drug Off-Target (DOT) (ID: OT01JWJB)

DOT Name Trifunctional purine biosynthetic protein adenosine-3 (GART)
Gene Name GART
UniProt ID
PUR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1MEJ ; 1MEN ; 1MEO ; 1NJS ; 1RBM ; 1RBQ ; 1RBY ; 1RBZ ; 1RC0 ; 1RC1 ; 1ZLX ; 1ZLY ; 2QK4 ; 2V9Y ; 4EW1 ; 4EW2 ; 4EW3 ; 4ZYT ; 4ZYU ; 4ZYV ; 4ZYW ; 4ZYX ; 4ZYY ; 4ZYZ ; 4ZZ0 ; 4ZZ1 ; 4ZZ2 ; 4ZZ3 ; 5J9F ; 7JG0 ; 7JG3 ; 7JG4 ; 8FDX ; 8FDY ; 8FDZ ; 8FE0 ; 8FJV ; 8FJW ; 8FJX ; 8FJY
EC Number
2.1.2.2; 6.3.3.1; 6.3.4.13
Pfam ID
PF00586 ; PF02769 ; PF00551 ; PF01071 ; PF02843 ; PF02844
Sequence
MAARVLIIGSGGREHTLAWKLAQSHHVKQVLVAPGNAGTACSEKISNTAISISDHTALAQ
FCKEKKIEFVVVGPEAPLAAGIVGNLRSAGVQCFGPTAEAAQLESSKRFAKEFMDRHGIP
TAQWKAFTKPEEACSFILSADFPALVVKASGLAAGKGVIVAKSKEEACKAVQEIMQEKAF
GAAGETIVIEELLDGEEVSCLCFTDGKTVAPMPPAQDHKRLLEGDGGPNTGGMGAYCPAP
QVSNDLLLKIKDTVLQRTVDGMQQEGTPYTGILYAGIMLTKNGPKVLEFNCRFGDPECQV
ILPLLKSDLYEVIQSTLDGLLCTSLPVWLENHTALTVVMASKGYPGDYTKGVEITGFPEA
QALGLEVFHAGTALKNGKVVTHGGRVLAVTAIRENLISALEEAKKGLAAIKFEGAIYRKD
VGFRAIAFLQQPRSLTYKESGVDIAAGNMLVKKIQPLAKATSRSGCKVDLGGFAGLFDLK
AAGFKDPLLASGTDGVGTKLKIAQLCNKHDTIGQDLVAMCVNDILAQGAEPLFFLDYFSC
GKLDLSVTEAVVAGIAKACGKAGCALLGGETAEMPDMYPPGEYDLAGFAVGAMERDQKLP
HLERITEGDVVVGIASSGLHSNGFSLVRKIVAKSSLQYSSPAPDGCGDQTLGDLLLTPTR
IYSHSLLPVLRSGHVKAFAHITGGGLLENIPRVLPEKLGVDLDAQTWRIPRVFSWLQQEG
HLSEEEMARTFNCGVGAVLVVSKEQTEQILRDIQQHKEEAWVIGSVVARAEGSPRVKVKN
LIESMQINGSVLKNGSLTNHFSFEKKKARVAVLISGTGSNLQALIDSTREPNSSAQIDIV
ISNKAAVAGLDKAERAGIPTRVINHKLYKNRVEFDSAIDLVLEEFSIDIVCLAGFMRILS
GPFVQKWNGKMLNIHPSLLPSFKGSNAHEQALETGVTVTGCTVHFVAEDVDAGQIILQEA
VPVKRGDTVATLSERVKLAEHKIFPAALQLVASGTVQLGENGKICWVKEE
Function Trifunctional enzyme that catalyzes three distinct reactions as part of the 'de novo' inosine monophosphate biosynthetic pathway.
KEGG Pathway
Purine metabolism (hsa00230 )
One carbon pool by folate (hsa00670 )
Metabolic pathways (hsa01100 )
Antifolate resistance (hsa01523 )
Reactome Pathway
Purine ribonucleoside monophosphate biosynthesis (R-HSA-73817 )
BioCyc Pathway
MetaCyc:HS08358-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Floxuridine DM04LR2 Approved Trifunctional purine biosynthetic protein adenosine-3 (GART) affects the response to substance of Floxuridine. [22]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [10]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [11]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [9]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [13]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [11]
Clozapine DMFC71L Approved Clozapine increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [18]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [19]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [20]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Trifunctional purine biosynthetic protein adenosine-3 (GART). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Trifunctional purine biosynthetic protein adenosine-3 (GART). [7]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Trifunctional purine biosynthetic protein adenosine-3 (GART). [15]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol. 2005 Oct;79(2):108-17.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
11 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
12 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
13 Expression profiling of nucleotide metabolism-related genes in human breast cancer cells after treatment with 5-fluorouracil. Cancer Invest. 2009 Jun;27(5):561-7.
14 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
15 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
16 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
19 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
20 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
21 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
22 Folic Acid-Metabolizing Enzymes Regulate the Antitumor Effect of 5-Fluoro-2'-Deoxyuridine in Colorectal Cancer Cell Lines. PLoS One. 2016 Sep 29;11(9):e0163961. doi: 10.1371/journal.pone.0163961. eCollection 2016.