General Information of Drug Off-Target (DOT) (ID: OT0G7E35)

DOT Name Interleukin-1 receptor type 2 (IL1R2)
Synonyms IL-1R-2; IL-1RT-2; IL-1RT2; CD121 antigen-like family member B; CDw121b; IL-1 type II receptor; Interleukin-1 receptor beta; IL-1R-beta; Interleukin-1 receptor type II; CD antigen CD121b
Gene Name IL1R2
UniProt ID
IL1R2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3O4O
Pfam ID
PF00047
Sequence
MLRLYVLVMGVSAFTLQPAAHTGAARSCRFRGRHYKREFRLEGEPVALRCPQVPYWLWAS
VSPRINLTWHKNDSARTVPGEEETRMWAQDGALWLLPALQEDSGTYVCTTRNASYCDKMS
IELRVFENTDAFLPFISYPQILTLSTSGVLVCPDLSEFTRDKTDVKIQWYKDSLLLDKDN
EKFLSVRGTTHLLVHDVALEDAGYYRCVLTFAHEGQQYNITRSIELRIKKKKEETIPVII
SPLKTISASLGSRLTIPCKVFLGTGTPLTTMLWWTANDTHIESAYPGGRVTEGPRQEYSE
NNENYIEVPLIFDPVTREDLHMDFKCVVHNTLSFQTLRTTVKEASSTFSWGIVLAPLSLA
FLVLGGIWMHRRCKHRTGKADGLTVLWPHHQDFQSYPK
Function
Non-signaling receptor for IL1A, IL1B and IL1RN. Reduces IL1B activities. Serves as a decoy receptor by competitive binding to IL1B and preventing its binding to IL1R1. Also modulates cellular response through non-signaling association with IL1RAP after binding to IL1B. IL1R2 (membrane and secreted forms) preferentially binds IL1B and poorly IL1A and IL1RN. The secreted IL1R2 recruits secreted IL1RAP with high affinity; this complex formation may be the dominant mechanism for neutralization of IL1B by secreted/soluble receptors.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Hematopoietic cell lineage (hsa04640 )
Amoebiasis (hsa05146 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Transcriptio.l misregulation in cancer (hsa05202 )
Prostate cancer (hsa05215 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Interleukin-1 signaling (R-HSA-9020702 )
Interleukin-10 signaling (R-HSA-6783783 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Aspirin DM672AH Approved Interleukin-1 receptor type 2 (IL1R2) affects the response to substance of Aspirin. [26]
Capecitabine DMTS85L Approved Interleukin-1 receptor type 2 (IL1R2) increases the response to substance of Capecitabine. [27]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Interleukin-1 receptor type 2 (IL1R2). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Interleukin-1 receptor type 2 (IL1R2). [20]
------------------------------------------------------------------------------------
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [3]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Interleukin-1 receptor type 2 (IL1R2). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Interleukin-1 receptor type 2 (IL1R2). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Interleukin-1 receptor type 2 (IL1R2). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [8]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [10]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Interleukin-1 receptor type 2 (IL1R2). [11]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Interleukin-1 receptor type 2 (IL1R2). [12]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [13]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [14]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [15]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Interleukin-1 receptor type 2 (IL1R2). [16]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [17]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [18]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Interleukin-1 receptor type 2 (IL1R2). [4]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Interleukin-1 receptor type 2 (IL1R2). [19]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [21]
Eugenol DM7US1H Patented Eugenol increases the expression of Interleukin-1 receptor type 2 (IL1R2). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Interleukin-1 receptor type 2 (IL1R2). [23]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Interleukin-1 receptor type 2 (IL1R2). [24]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Interleukin-1 receptor type 2 (IL1R2). [25]
geraniol DMS3CBD Investigative geraniol increases the expression of Interleukin-1 receptor type 2 (IL1R2). [16]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Interleukin-1 receptor type 2 (IL1R2). [16]
Farnesol DMV2X1B Investigative Farnesol increases the expression of Interleukin-1 receptor type 2 (IL1R2). [16]
benzyl bromide DM857X2 Investigative benzyl bromide increases the expression of Interleukin-1 receptor type 2 (IL1R2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Aberrantly expressed genes in HaCaT keratinocytes chronically exposed to arsenic trioxide. Biomark Insights. 2011 Feb 8;6:7-16.
7 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
8 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
9 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
12 Sulfur mustard alkylates steroid hormones and impacts hormone function in vitro. Arch Toxicol. 2019 Nov;93(11):3141-3152. doi: 10.1007/s00204-019-02571-x. Epub 2019 Sep 12.
13 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
14 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
15 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
16 The THP-1 cell toolbox: a new concept integrating the key events of skin sensitization. Arch Toxicol. 2019 Apr;93(4):941-951.
17 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Expression of neutrophil SOD2 is reduced after lipopolysaccharide stimulation: a potential cause of neutrophil dysfunction in chronic kidney disease. Nephrol Dial Transplant. 2011 Jul;26(7):2195-201. doi: 10.1093/ndt/gfq673. Epub 2010 Nov 2.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
22 Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes. Toxicol Lett. 2010 Nov 10;199(1):51-9.
23 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
24 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
25 Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol. 2012 Apr;86(4):571-89.
26 Gene-expression profiles in human nasal polyp tissues and identification of genetic susceptibility in aspirin-intolerant asthma. Clin Exp Allergy. 2009 Jul;39(7):972-81. doi: 10.1111/j.1365-2222.2009.03229.x. Epub 2009 Mar 27.
27 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.