General Information of Drug Off-Target (DOT) (ID: OT29167O)

DOT Name Tetraspanin-14 (TSPAN14)
Synonyms Tspan-14; DC-TM4F2; Transmembrane 4 superfamily member 14
Gene Name TSPAN14
Related Disease
Non-small-cell lung cancer ( )
Chronic obstructive pulmonary disease ( )
Coronary heart disease ( )
Ankylosing spondylitis ( )
Crohn disease ( )
Inflammatory bowel disease ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Ulcerative colitis ( )
UniProt ID
TSN14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00335
Sequence
MHYYRYSNAKVSCWYKYLLFSYNIIFWLAGVVFLGVGLWAWSEKGVLSDLTKVTRMHGID
PVVLVLMVGVVMFTLGFAGCVGALRENICLLNFFCGTIVLIFFLELAVAVLAFLFQDWVR
DRFREFFESNIKSYRDDIDLQNLIDSLQKANQCCGAYGPEDWDLNVYFNCSGASYSREKC
GVPFSCCVPDPAQKVVNTQCGYDVRIQLKSKWDESIFTKGCIQALESWLPRNIYIVAGVF
IAISLLQIFGIFLARTLISDIEAVKAGHHF
Function
Part of TspanC8 subgroup, composed of 6 members that interact with the transmembrane metalloprotease ADAM10. This interaction is required for ADAM10 exit from the endoplasmic reticulum and for enzymatic maturation and trafficking to the cell surface as well as substrate specificity. Different TspanC8/ADAM10 complexes have distinct substrates. Negatively regulates ADAM10-mediated cleavage of GP6. Promotes ADAM10-mediated cleavage of CDH5.
Reactome Pathway
Amyloid fiber formation (R-HSA-977225 )
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-small-cell lung cancer DIS5Y6R9 Definitive Genetic Variation [1]
Chronic obstructive pulmonary disease DISQCIRF Strong Genetic Variation [2]
Coronary heart disease DIS5OIP1 moderate Genetic Variation [3]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [4]
Crohn disease DIS2C5Q8 Limited Genetic Variation [5]
Inflammatory bowel disease DISGN23E Limited Genetic Variation [5]
Psoriasis DIS59VMN Limited Genetic Variation [4]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [4]
Ulcerative colitis DIS8K27O Limited Genetic Variation [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tetraspanin-14 (TSPAN14). [6]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tetraspanin-14 (TSPAN14). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Tetraspanin-14 (TSPAN14). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tetraspanin-14 (TSPAN14). [17]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tetraspanin-14 (TSPAN14). [7]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tetraspanin-14 (TSPAN14). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tetraspanin-14 (TSPAN14). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tetraspanin-14 (TSPAN14). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tetraspanin-14 (TSPAN14). [12]
Selenium DM25CGV Approved Selenium increases the expression of Tetraspanin-14 (TSPAN14). [13]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Tetraspanin-14 (TSPAN14). [14]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Tetraspanin-14 (TSPAN14). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Tetraspanin-14 (TSPAN14). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Tetraspanin-14 (TSPAN14). [18]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Tetraspanin-14 (TSPAN14). [19]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Tetraspanin-14 (TSPAN14). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Identification of genes associated with non-small-cell lung cancer promotion and progression.Lung Cancer. 2010 Feb;67(2):151-9. doi: 10.1016/j.lungcan.2009.04.010. Epub 2009 May 26.
2 Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.Nat Genet. 2019 Mar;51(3):494-505. doi: 10.1038/s41588-018-0342-2. Epub 2019 Feb 25.
3 Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018 Feb 2;122(3):433-443. doi: 10.1161/CIRCRESAHA.117.312086. Epub 2017 Dec 6.
4 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
5 Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.Nat Genet. 2017 Feb;49(2):256-261. doi: 10.1038/ng.3760. Epub 2017 Jan 9.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
8 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
12 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
13 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
18 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
19 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
20 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.