General Information of Drug Off-Target (DOT) (ID: OT44KXPY)

DOT Name Striatin-3 (STRN3)
Synonyms Cell cycle autoantigen SG2NA; S/G2 antigen
Gene Name STRN3
Related Disease
Bladder cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Vitiligo ( )
UniProt ID
STRN3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4N6J; 6AKL; 6IUR; 7K36
Pfam ID
PF08232 ; PF00400
Sequence
MDELAGGGGGGPGMAAPPRQQQGPGGNLGLSPGGNGAAGGGGPPASEGAGPAAGPELSRP
QQYTIPGILHYIQHEWARFEMERAHWEVERAELQARIAFLQGERKGQENLKKDLVRRIKM
LEYALKQERAKYHKLKYGTELNQGDLKMPTFESEETKDTEAPTAPQNSQLTWKQGRQLLR
QYLQEVGYTDTILDVRSQRVRSLLGLSNSEPNGSVETKNLEQILNGGESPKQKGQEIKRS
SGDVLETFNFLENADDSDEDEENDMIEGIPEGKDKHRMNKHKIGNEGLAADLTDDPDTEE
ALKEFDFLVTAEDGEGAGEARSSGDGTEWDKDDLSPTAEVWDVDQGLISKLKEQYKKERK
GKKGVKRANRTKLYDMIADLGDDELPHIPSGIINQSRSASTRMTDHEGARAEEAEPITFP
SGGGKSFIMGSDDVLLSVLGLGDLADLTVTNDADYSYDLPANKDAFRKTWNPKYTLRSHF
DGVRALAFHPVEPVLVTASEDHTLKLWNLQKTVPAKKSASLDVEPIYTFRAHIGPVLSLA
ISSNGEQCFSGGIDATIQWWNMPSPSVDPYDTYEPNVLAGTLVGHTDAVWGLAYSGIKNQ
LLSCSADGTVRLWNPQEKLPCICTYNGDKKHGIPTSVDFIGCDPAHMVTSFNTGSAVIYD
LETSQSLVILSSQVDSGLQSNNHINRVVSHPTLPVTITAHEDRHIKFFDNKTGKMIHSMV
AHLDAVTSLAVDPNGIYLMSGSHDCSIRLWNLDSKTCVQEITAHRKKLDESIYDVAFHSS
KAYIASAGADALAKVFV
Function Binds calmodulin in a calcium dependent manner. May function as scaffolding or signaling protein.

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bladder cancer DISUHNM0 Strong Biomarker [1]
Urinary bladder cancer DISDV4T7 Strong Biomarker [1]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [1]
Vitiligo DISR05SL Strong Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Striatin-3 (STRN3). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Striatin-3 (STRN3). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Striatin-3 (STRN3). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Striatin-3 (STRN3). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Striatin-3 (STRN3). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Striatin-3 (STRN3). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Striatin-3 (STRN3). [9]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Striatin-3 (STRN3). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Striatin-3 (STRN3). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Striatin-3 (STRN3). [14]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Striatin-3 (STRN3). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Striatin-3 (STRN3). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Striatin-3 (STRN3). [13]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Striatin-3 (STRN3). [13]
------------------------------------------------------------------------------------

References

1 Biophysical Characterization of SG2NA Variants and their Interaction with DJ-1 and Calmodulin in vitro.Cell Biochem Biophys. 2018 Dec;76(4):451-461. doi: 10.1007/s12013-018-0854-5. Epub 2018 Aug 21.
2 Three new single nucleotide polymorphisms identified by a genome-wide association study in Korean patients with vitiligo.J Korean Med Sci. 2013 May;28(5):775-9. doi: 10.3346/jkms.2013.28.5.775. Epub 2013 May 2.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
10 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.