General Information of Drug Off-Target (DOT) (ID: OT501PY9)

DOT Name Polyphosphoinositide phosphatase (FIG4)
Synonyms EC 3.1.3.-; EC 3.1.3.36; EC 3.1.3.86; Phosphatidylinositol 3,5-bisphosphate 5-phosphatase; SAC domain-containing protein 3; Serine-protein phosphatase FIG4; EC 3.1.3.16
Gene Name FIG4
Related Disease
Charcot marie tooth disease ( )
Charcot-Marie-Tooth disease type 4J ( )
Microcephalic primordial dwarfism due to RTTN deficiency ( )
Amyotrophic lateral sclerosis type 1 ( )
Amyotrophic lateral sclerosis type 11 ( )
Charcot-Marie-Tooth disease type 1 ( )
Charcot-Marie-Tooth disease type 1A ( )
Charcot-Marie-Tooth disease type 1B ( )
Charcot-Marie-Tooth disease type 2 ( )
Epilepsy ( )
Hereditary motor and sensory neuropathy ( )
Hypopigmentation of the skin ( )
Lateral sclerosis ( )
Malignant glioma ( )
Motor neurone disease ( )
Peripheral neuropathy ( )
Yunis-Varon syndrome ( )
High blood pressure ( )
Papillon-Lefevre disease ( )
Amyotrophic lateral sclerosis ( )
Bilateral parasagittal parieto-occipital polymicrogyria ( )
Breast cancer ( )
Breast carcinoma ( )
Charcot-Marie-Tooth disease type 3 ( )
Charcot-Marie-Tooth disease type 4 ( )
Demyelinating polyneuropathy ( )
Lysosomal storage disease ( )
Neuroblastoma ( )
UniProt ID
FIG4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7K1W
EC Number
3.1.3.-; 3.1.3.16; 3.1.3.36; 3.1.3.86
Pfam ID
PF02383
Sequence
MPTAAAPIISSVQKLVLYETRARYFLVGSNNAETKYRVLKIDRTEPKDLVIIDDRHVYTQ
QEVRELLGRLDLGNRTKMGQKGSSGLFRAVSAFGVVGFVRFLEGYYIVLITKRRKMADIG
GHAIYKVEDTNMIYIPNDSVRVTHPDEARYLRIFQNVDLSSNFYFSYSYDLSHSLQYNLT
VLRMPLEMLKSEMTQNRQESFDIFEDEGLITQGGSGVFGICSEPYMKYVWNGELLDIIKS
TVHRDWLLYIIHGFCGQSKLLIYGRPVYVTLIARRSSKFAGTRFLKRGANCEGDVANEVE
TEQILCDASVMSFTAGSYSSYVQVRGSVPLYWSQDISTMMPKPPITLDQADPFAHVAALH
FDQMFQRFGSPIIILNLVKEREKRKHERILSEELVAAVTYLNQFLPPEHTIVYIPWDMAK
YTKSKLCNVLDRLNVIAESVVKKTGFFVNRPDSYCSILRPDEKWNELGGCVIPTGRLQTG
ILRTNCVDCLDRTNTAQFMVGKCALAYQLYSLGLIDKPNLQFDTDAVRLFEELYEDHGDT
LSLQYGGSQLVHRVKTYRKIAPWTQHSKDIMQTLSRYYSNAFSDADRQDSINLFLGVFHP
TEGKPHLWELPTDFYLHHKNTMRLLPTRRSYTYWWTPEVIKHLPLPYDEVICAVNLKKLI
VKKFHKYEEEIDIHNEFFRPYELSSFDDTFCLAMTSSARDFMPKTVGIDPSPFTVRKPDE
TGKSVLGNKSNREEAVLQRKTAASAPPPPSEEAVSSSSEDDSGTDREEEGSVSQRSTPVK
MTDAGDSAKVTENVVQPMKELYGINLSDGLSEEDFSIYSRFVQLGQSQHKQDKNSQQPCS
RCSDGVIKLTPISAFSQDNIYEVQPPRVDRKSTEIFQAHIQASQGIMQPLGKEDSSMYRE
YIRNRYL
Function
Dual specificity phosphatase component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Catalyzes the dephosphorylation of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) to form phosphatidylinositol 3-phosphate. Has serine-protein phosphatase activity acting on PIKfyve to stimulate its lipid kinase activity, its catalytically activity being required for maximal PI(3,5)P2 production. In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide and although displaying preferences for PtdIns(3,5)P2, it is capable of hydrolyzing PtdIns(3,4,5)P3 and PtdIns(4,5)P2, at least in vitro.
KEGG Pathway
Inositol phosphate metabolism (hsa00562 )
Metabolic pathways (hsa01100 )
Amyotrophic lateral sclerosis (hsa05014 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Reactome Pathway
Synthesis of PIPs at the early endosome membrane (R-HSA-1660516 )
Synthesis of PIPs at the late endosome membrane (R-HSA-1660517 )
Synthesis of PIPs at the Golgi membrane (R-HSA-1660514 )
BioCyc Pathway
MetaCyc:HS12771-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Charcot marie tooth disease DIS3BT2L Definitive Autosomal recessive [1]
Charcot-Marie-Tooth disease type 4J DIS23T23 Definitive Autosomal recessive [2]
Microcephalic primordial dwarfism due to RTTN deficiency DIS25LK9 Definitive Genetic Variation [3]
Amyotrophic lateral sclerosis type 1 DIS5A2M0 Strong Genetic Variation [4]
Amyotrophic lateral sclerosis type 11 DISITB5O Strong Autosomal dominant [2]
Charcot-Marie-Tooth disease type 1 DIS56F9A Strong Biomarker [5]
Charcot-Marie-Tooth disease type 1A DISSRZG7 Strong Biomarker [5]
Charcot-Marie-Tooth disease type 1B DISJRS1V Strong Biomarker [5]
Charcot-Marie-Tooth disease type 2 DISR30O9 Strong Biomarker [5]
Epilepsy DISBB28L Strong Genetic Variation [6]
Hereditary motor and sensory neuropathy DISR0X2K Strong Biomarker [7]
Hypopigmentation of the skin DIS39YKC Strong Genetic Variation [8]
Lateral sclerosis DISH30B8 Strong Genetic Variation [4]
Malignant glioma DISFXKOV Strong Biomarker [9]
Motor neurone disease DISUHWUI Strong Biomarker [10]
Peripheral neuropathy DIS7KN5G Strong Genetic Variation [11]
Yunis-Varon syndrome DISKC6IE Strong Autosomal recessive [12]
High blood pressure DISY2OHH moderate Genetic Variation [13]
Papillon-Lefevre disease DIS3R7KX moderate Biomarker [14]
Amyotrophic lateral sclerosis DISF7HVM Supportive Autosomal dominant [15]
Bilateral parasagittal parieto-occipital polymicrogyria DISN02H0 Supportive Autosomal recessive [16]
Breast cancer DIS7DPX1 Limited Biomarker [17]
Breast carcinoma DIS2UE88 Limited Biomarker [17]
Charcot-Marie-Tooth disease type 3 DIS6DQK1 Limited Biomarker [7]
Charcot-Marie-Tooth disease type 4 DISM8IZN Limited CausalMutation [18]
Demyelinating polyneuropathy DIS7IO4W Limited Biomarker [19]
Lysosomal storage disease DIS6QM6U Limited Biomarker [20]
Neuroblastoma DISVZBI4 Limited Biomarker [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved Polyphosphoinositide phosphatase (FIG4) affects the response to substance of Topotecan. [36]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Polyphosphoinositide phosphatase (FIG4). [22]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Polyphosphoinositide phosphatase (FIG4). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Polyphosphoinositide phosphatase (FIG4). [33]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Polyphosphoinositide phosphatase (FIG4). [23]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Polyphosphoinositide phosphatase (FIG4). [24]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Polyphosphoinositide phosphatase (FIG4). [25]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Polyphosphoinositide phosphatase (FIG4). [26]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Polyphosphoinositide phosphatase (FIG4). [27]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Polyphosphoinositide phosphatase (FIG4). [29]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Polyphosphoinositide phosphatase (FIG4). [30]
Selenium DM25CGV Approved Selenium decreases the expression of Polyphosphoinositide phosphatase (FIG4). [31]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Polyphosphoinositide phosphatase (FIG4). [31]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Polyphosphoinositide phosphatase (FIG4). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Polyphosphoinositide phosphatase (FIG4). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Polyphosphoinositide phosphatase (FIG4). [34]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Polyphosphoinositide phosphatase (FIG4). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Biallelic Mutations of VAC14 in Pediatric-Onset Neurological Disease.Am J Hum Genet. 2016 Jul 7;99(1):188-94. doi: 10.1016/j.ajhg.2016.05.008. Epub 2016 Jun 9.
4 Novel FIG4 mutations in Yunis-Varon syndrome.J Hum Genet. 2013 Dec;58(12):822-4. doi: 10.1038/jhg.2013.104. Epub 2013 Oct 3.
5 Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature. 2007 Jul 5;448(7149):68-72. doi: 10.1038/nature05876. Epub 2007 Jun 17.
6 Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development.Exp Neurol. 2016 Mar;277:86-95. doi: 10.1016/j.expneurol.2015.12.011. Epub 2015 Dec 19.
7 Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration.Hum Mol Genet. 2012 Aug 15;21(16):3525-34. doi: 10.1093/hmg/dds179. Epub 2012 May 11.
8 The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation.J Cell Sci. 2019 Feb 28;132(5):jcs229500. doi: 10.1242/jcs.229500.
9 Decreased expression of germinal center-associated nuclear protein is involved in chromosomal instability in malignant gliomas.Cancer Sci. 2009 Nov;100(11):2069-76. doi: 10.1111/j.1349-7006.2009.01293.x. Epub 2009 Jul 21.
10 Distinct pathogenic processes between Fig4-deficient motor and sensory neurons.Eur J Neurosci. 2011 Apr;33(8):1401-10. doi: 10.1111/j.1460-9568.2011.07651.x. Epub 2011 Mar 17.
11 Cerebral hypomyelination associated with biallelic variants of FIG4.Hum Mutat. 2019 May;40(5):619-630. doi: 10.1002/humu.23720. Epub 2019 Feb 28.
12 FIG4-Associated Yunis-Varon Syndrome: Identification of a Novel Missense Variant. Mol Syndromol. 2021 Oct;12(6):386-392. doi: 10.1159/000516971. Epub 2021 Aug 27.
13 Development and Validation of the Procedure-Related Neurologic Complications Risk Score for Elderly Patients with Ruptured Intracranial Aneurysm Undergoing Endovascular Treatment.World Neurosurg. 2017 Apr;100:648-657.e2. doi: 10.1016/j.wneu.2017.01.085. Epub 2017 Jan 31.
14 Exome Sequencing Identifies a Mutation (Y740C) in Spastic Paraplegia 7 Gene Associated with Adult-Onset Primary Lateral Sclerosis in a Chinese Family.Eur Neurol. 2019;81(1-2):87-93. doi: 10.1159/000500672. Epub 2019 May 22.
15 Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol. 2013 Nov;260(11):2917-27. doi: 10.1007/s00415-013-7112-y. Epub 2013 Oct 2.
16 Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria. Neurology. 2014 Mar 25;82(12):1068-75. doi: 10.1212/WNL.0000000000000241. Epub 2014 Mar 5.
17 The PIKfyve-ArPIKfyve-Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines.Biochem Biophys Res Commun. 2013 Oct 18;440(2):342-7. doi: 10.1016/j.bbrc.2013.09.080. Epub 2013 Sep 23.
18 Genetic heterogeneity of motor neuropathies.Neurology. 2017 Mar 28;88(13):1226-1234. doi: 10.1212/WNL.0000000000003772. Epub 2017 Mar 1.
19 Myelin abnormality in Charcot-Marie-Tooth type 4J recapitulates features of acquired demyelination.Ann Neurol. 2018 Apr;83(4):756-770. doi: 10.1002/ana.25198. Epub 2018 Mar 30.
20 Fig4 deficiency: a newly emerged lysosomal storage disorder?.Prog Neurobiol. 2013 Feb-Mar;101-102:35-45. doi: 10.1016/j.pneurobio.2012.11.001. Epub 2012 Nov 16.
21 Enhanced Neurogenic Biomarker Expression and Reinnervation in HumanAcute Skin Wounds Treated by Electrical Stimulation.J Invest Dermatol. 2017 Mar;137(3):737-747. doi: 10.1016/j.jid.2016.09.038. Epub 2016 Nov 14.
22 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
23 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
24 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
25 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
26 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
27 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
28 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
29 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
30 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
31 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
32 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
33 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
34 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
35 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
36 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.