General Information of Drug Off-Target (DOT) (ID: OT562DA1)

DOT Name Fatty acid-binding protein, heart (FABP3)
Synonyms Fatty acid-binding protein 3; Heart-type fatty acid-binding protein; H-FABP; Mammary-derived growth inhibitor; MDGI; Muscle fatty acid-binding protein; M-FABP
Gene Name FABP3
UniProt ID
FABPH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1G5W ; 1HMR ; 1HMS ; 1HMT ; 2HMB ; 3RSW ; 3WBG ; 3WVM ; 3WXQ ; 4TJZ ; 4TKB ; 4TKH ; 4TKJ ; 4WBK ; 5B27 ; 5B28 ; 5B29 ; 5CE4 ; 5HZ9 ; 6AQ1 ; 7EGO ; 7EUV ; 7EUW ; 7FBF ; 7FBM ; 7FBN ; 7FC4 ; 7FCG ; 7FCX ; 7FD7 ; 7FDT ; 7FDU ; 7FDX ; 7FEK ; 7FEU ; 7FEZ ; 7FF6 ; 7FFK ; 7FFX ; 7FG1 ; 7FG5 ; 7FZQ ; 7V2G ; 7V5U ; 7VB1 ; 7WCI ; 7WD6 ; 7WDJ ; 7WE5 ; 7WF0 ; 7WJ1 ; 7WKB ; 7WKG ; 7WOM ; 7WPG ; 7WPU ; 7WPW ; 7WQ7 ; 7X48 ; 7X4J ; 7X50 ; 7XBC ; 7XHM ; 7XHU ; 8GEW
Pfam ID
PF00061
Sequence
MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKN
TEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTH
GTAVCTRTYEKEA
Function FABPs are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters.
KEGG Pathway
PPAR sig.ling pathway (hsa03320 )
Reactome Pathway
Triglyceride catabolism (R-HSA-163560 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Fatty acid-binding protein, heart (FABP3). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fatty acid-binding protein, heart (FABP3). [2]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Fatty acid-binding protein, heart (FABP3). [3]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Fatty acid-binding protein, heart (FABP3). [4]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fatty acid-binding protein, heart (FABP3). [5]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Fatty acid-binding protein, heart (FABP3). [6]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Fatty acid-binding protein, heart (FABP3). [4]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Fatty acid-binding protein, heart (FABP3). [7]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Fatty acid-binding protein, heart (FABP3). [8]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Fatty acid-binding protein, heart (FABP3). [9]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Fatty acid-binding protein, heart (FABP3). [10]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Fatty acid-binding protein, heart (FABP3). [11]
Benzatropine DMF7EXL Approved Benzatropine increases the expression of Fatty acid-binding protein, heart (FABP3). [12]
Methamphetamine DMPM4SK Approved Methamphetamine increases the expression of Fatty acid-binding protein, heart (FABP3). [13]
Haloperidol DM96SE0 Approved Haloperidol increases the expression of Fatty acid-binding protein, heart (FABP3). [12]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Fatty acid-binding protein, heart (FABP3). [14]
Bezafibrate DMZDCS0 Approved Bezafibrate decreases the expression of Fatty acid-binding protein, heart (FABP3). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Fatty acid-binding protein, heart (FABP3). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Fatty acid-binding protein, heart (FABP3). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Fatty acid-binding protein, heart (FABP3). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fatty acid-binding protein, heart (FABP3). [19]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Fatty acid-binding protein, heart (FABP3). [20]
Linoleic acid DMDGPY9 Investigative Linoleic acid decreases the expression of Fatty acid-binding protein, heart (FABP3). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Fatty acid-binding protein, heart (FABP3). [17]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
5 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
6 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
9 Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun. 2001 Jan 26;280(3):664-74. doi: 10.1006/bbrc.2000.4216.
10 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
11 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
12 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
13 Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One. 2014 Oct 7;9(10):e109603.
14 Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep. 2023 Jun 29;13(1):10519. doi: 10.1038/s41598-023-37488-0.
15 Expression of cFABP and PPAR in trophoblast cells: effect of PPAR ligands on linoleic acid uptake and differentiation. Biochim Biophys Acta. 2005 Feb 21;1687(1-3):181-94. doi: 10.1016/j.bbalip.2004.11.017.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
20 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.