General Information of Drug Off-Target (DOT) (ID: OT66MP0F)

DOT Name Carboxypeptidase A4 (CPA4)
Synonyms EC 3.4.17.-; Carboxypeptidase A3
Gene Name CPA4
UniProt ID
CBPA4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2BO9; 2BOA; 2PCU; 4A94; 4BD9
EC Number
3.4.17.-
Pfam ID
PF00246 ; PF02244
Sequence
MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSF
NRPVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNY
GAYHSLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGI
HSREWISQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRK
TRSRNPGSSCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGN
FKGFIDLHSYSQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVY
PASGSSIDWAYDNGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNL
Y
Function Metalloprotease that could be involved in the histone hyperacetylation pathway. Releases a C-terminal amino acid, with preference for -Phe, -Leu, -Ile, -Met, -Tyr and -Val.
Tissue Specificity Fetal expression in the adrenal gland, brain, heart, intestine, kidney, liver and lung. Except for fetal brain that shows no imprinting, expression was found preferentially from the maternal allele.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Carboxypeptidase A4 (CPA4). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carboxypeptidase A4 (CPA4). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Carboxypeptidase A4 (CPA4). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Carboxypeptidase A4 (CPA4). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Carboxypeptidase A4 (CPA4). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Carboxypeptidase A4 (CPA4). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Carboxypeptidase A4 (CPA4). [7]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Carboxypeptidase A4 (CPA4). [8]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Carboxypeptidase A4 (CPA4). [9]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Carboxypeptidase A4 (CPA4). [10]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Carboxypeptidase A4 (CPA4). [11]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Carboxypeptidase A4 (CPA4). [12]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Carboxypeptidase A4 (CPA4). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Carboxypeptidase A4 (CPA4). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Carboxypeptidase A4 (CPA4). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Carboxypeptidase A4 (CPA4). [17]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Carboxypeptidase A4 (CPA4). [18]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Carboxypeptidase A4 (CPA4). [19]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Carboxypeptidase A4 (CPA4). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Carboxypeptidase A4 (CPA4). [14]
------------------------------------------------------------------------------------

References

1 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Unique signatures of stress-induced senescent human astrocytes. Exp Neurol. 2020 Dec;334:113466. doi: 10.1016/j.expneurol.2020.113466. Epub 2020 Sep 17.
7 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
8 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
11 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
12 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
13 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
20 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.