General Information of Drug Off-Target (DOT) (ID: OT6FY2KA)

DOT Name Sodium/myo-inositol cotransporter (SLC5A3)
Synonyms Na(+)/myo-inositol cotransporter; Sodium/myo-inositol transporter 1; SMIT1; Solute carrier family 5 member 3
Gene Name SLC5A3
UniProt ID
SC5A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00474
Sequence
MRAVLDTADIAIVALYFILVMCIGFFAMWKSNRSTVSGYFLAGRSMTWVAIGASLFVSNI
GSEHFIGLAGSGAASGFAVGAWEFNALLLLQLLGWVFIPIYIRSGVYTMPEYLSKRFGGH
RIQVYFAALSLILYIFTKLSVDLYSGALFIQESLGWNLYVSVILLIGMTALLTVTGGLVA
VIYTDTLQALLMIIGALTLMIISIMEIGGFEEVKRRYMLASPDVTSILLTYNLSNTNSCN
VSPKKEALKMLRNPTDEDVPWPGFILGQTPASVWYWCADQVIVQRVLAAKNIAHAKGSTL
MAGFLKLLPMFIIVVPGMISRILFTDDIACINPEHCMLVCGSRAGCSNIAYPRLVMKLVP
VGLRGLMMAVMIAALMSDLDSIFNSASTIFTLDVYKLIRKSASSRELMIVGRIFVAFMVV
ISIAWVPIIVEMQGGQMYLYIQEVADYLTPPVAALFLLAIFWKRCNEQGAFYGGMAGFVL
GAVRLILAFAYRAPECDQPDNRPGFIKDIHYMYVATGLFWVTGLITVIVSLLTPPPTKEQ
IRTTTFWSKKNLVVKENCSPKEEPYKMQEKSILRCSENNETINHIIPNGKSEDSIKGLQP
EDVNLLVTCREEGNPVASLGHSEAETPVDAYSNGQAALMGEKERKKETDDGGRYWKFIDW
FCGFKSKSLSKRSLRDLMEEEAVCLQMLEETRQVKVILNIGLFAVCSLGIFMFVYFSL
Function
Electrogenic Na(+)-coupled sugar symporter that actively transports myo-inositol and its stereoisomer scyllo-inositol across the plasma membrane, with a Na(+) to sugar coupling ratio of 2:1. Maintains myo-inositol concentration gradient that defines cell volume and fluid balance during osmotic stress, in particular in the fetoplacental unit and central nervous system. Forms coregulatory complexes with voltage-gated K(+) ion channels, allosterically altering ion selectivity, voltage dependence and gating kinetics of the channel. In turn, K(+) efflux through the channel forms a local electrical gradient that modulates electrogenic Na(+)-coupled myo-inositol influx through the transporter. Associates with KCNQ1-KCNE2 channel in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability. Associates with KCNQ2-KCNQ3 channel altering ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) permeation. Provides myo-inositol precursor for biosynthesis of phosphoinositides such as PI(4,5)P2, thus indirectly affecting the activity of phosphoinositide-dependent ion channels and Ca(2+) signaling upon osmotic stress.
Reactome Pathway
Inositol transporters (R-HSA-429593 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Sodium/myo-inositol cotransporter (SLC5A3). [1]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Sodium/myo-inositol cotransporter (SLC5A3). [10]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [11]
Progesterone DMUY35B Approved Progesterone decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [12]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [13]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [14]
Ethanol DMDRQZU Approved Ethanol increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [15]
Piroxicam DMTK234 Approved Piroxicam increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [16]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [17]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [18]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [22]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [23]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Sodium/myo-inositol cotransporter (SLC5A3). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
12 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
13 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
14 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
15 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
16 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
17 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
22 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
23 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
24 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.