General Information of Drug Off-Target (DOT) (ID: OT6Q6FBD)

DOT Name Electron transfer flavoprotein subunit beta (ETFB)
Synonyms Beta-ETF
Gene Name ETFB
Related Disease
Multiple acyl-CoA dehydrogenase deficiency ( )
Advanced cancer ( )
Behcet disease ( )
Neoplasm ( )
Dorfman-Chanarin disease ( )
Neutral lipid storage myopathy ( )
Systemic primary carnitine deficiency disease ( )
UniProt ID
ETFB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1EFV; 1T9G; 2A1T; 2A1U
Pfam ID
PF01012
Sequence
MAELRVLVAVKRVIDYAVKIRVKPDRTGVVTDGVKHSMNPFCEIAVEEAVRLKEKKLVKE
VIAVSCGPAQCQETIRTALAMGADRGIHVEVPPAEAERLGPLQVARVLAKLAEKEKVDLV
LLGKQAIDDDCNQTGQMTAGFLDWPQGTFASQVTLEGDKLKVEREIDGGLETLRLKLPAV
VTADLRLNEPRYATLPNIMKAKKKKIEVIKPGDLGVDLTSKLSVISVEDPPQRTAGVKVE
TTEDLVAKLKEIGRI
Function
Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (Probable). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism. ETFB binds an AMP molecule that probably has a purely structural role.
Tissue Specificity Abundant in liver, heart and skeletal muscle. A weak expression is seen in the brain, placenta, lung, kidney and pancreas.
Reactome Pathway
Protein methylation (R-HSA-8876725 )
Respiratory electron transport (R-HSA-611105 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Multiple acyl-CoA dehydrogenase deficiency DISEFBN7 Definitive Autosomal recessive [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Behcet disease DISSYMBS Strong Biomarker [3]
Neoplasm DISZKGEW Strong Biomarker [2]
Dorfman-Chanarin disease DISKKT3R Limited Biomarker [4]
Neutral lipid storage myopathy DISR9UYD Limited Biomarker [4]
Systemic primary carnitine deficiency disease DIS9OPZ4 Limited Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Electron transfer flavoprotein subunit beta (ETFB) affects the response to substance of Fluorouracil. [21]
Vinblastine DM5TVS3 Approved Electron transfer flavoprotein subunit beta (ETFB) affects the response to substance of Vinblastine. [22]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Electron transfer flavoprotein subunit beta (ETFB). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [9]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Electron transfer flavoprotein subunit beta (ETFB). [10]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [12]
Quercetin DM3NC4M Approved Quercetin increases the expression of Electron transfer flavoprotein subunit beta (ETFB). [14]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [15]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Electron transfer flavoprotein subunit beta (ETFB). [16]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Electron transfer flavoprotein subunit beta (ETFB). [5]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [11]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Electron transfer flavoprotein subunit beta (ETFB). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Electron transfer flavoprotein subunit beta (ETFB). [13]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Exome array analysis identifies ETFB as a novel susceptibility gene for anthracycline-induced cardiotoxicity in cancer patients.Breast Cancer Res Treat. 2018 Jan;167(1):249-256. doi: 10.1007/s10549-017-4497-9. Epub 2017 Sep 14.
3 Electron Transfer Flavoprotein Subunit Beta Is a Candidate Endothelial Cell Autoantigen in Behet's Disease.PLoS One. 2015 Apr 27;10(4):e0124760. doi: 10.1371/journal.pone.0124760. eCollection 2015.
4 Clinical and genetic analysis of lipid storage myopathies.Muscle Nerve. 2009 Mar;39(3):333-42. doi: 10.1002/mus.21167.
5 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
11 Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004 Jun 30;221(1-2):47-55. doi: 10.1016/j.mce.2004.04.010.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
16 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
21 Mechanistic and predictive profiling of 5-Fluorouracil resistance in human cancer cells. Cancer Res. 2004 Nov 15;64(22):8167-76. doi: 10.1158/0008-5472.CAN-04-0970.
22 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.