General Information of Drug Off-Target (DOT) (ID: OT7EX8JJ)

DOT Name Folliculin-interacting protein 2 (FNIP2)
Synonyms FNIP1-like protein; O6-methylguanine-induced apoptosis 1 protein
Gene Name FNIP2
Related Disease
Advanced cancer ( )
Renal cell carcinoma ( )
Birt-Hogg-Dube syndrome ( )
Clear cell renal carcinoma ( )
Hip dysplasia, Beukes type ( )
Kidney cancer ( )
Neoplasm ( )
Renal carcinoma ( )
UniProt ID
FNIP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6NZD; 6ULG; 7LSW; 7LT6; 8DHB
Pfam ID
PF14638 ; PF14637 ; PF14636
Sequence
MAPTLLQKLFNKRGSSGSSAAASAQGRAPKEGPAFSWSCSEFDLNEIRLIVYQDCDRRGR
QVLFDSKAVQKIEEVTAQKTEDVPIKISAKCCQGSSSVSSSSSSSISSHSSSGGSSHHAK
EQLPKYQYTRPASDVNMLGEMMFGSVAMSYKGSTLKIHYIRSPPQLMISKVFSARMGSFC
GSTNNLQDSFEYINQDPNLGKLNTNQNSLGPCRTGSNLAHSTPVDMPSRGQNEDRDSGIA
RSASLSSLLITPFPSPSSSTSSSSSYQRRWLRSQTTSLENGIIPRRSTDETFSLAEETCS
SNPAMVRRKKIAISIIFSLCEKEEAQRNFQDFFFSHFPLFESHMNRLKSAIEKAMISCRK
IAESSLRVQFYVSRLMEALGEFRGTIWNLYSVPRIAEPVWLTMMSGTLEKNQLCQRFLKE
FTLLIEQINKNQFFAALLTAVLTYHLAWVPTVMPVDHPPIKAFSEKRTSQSVNMLAKTHP
YNPLWAQLGDLYGAIGSPVRLTRTVVVGKQKDLVQRILYVLTYFLRCSELQENQLTWSGN
HGEGDQVLNGSKIITALEKGEVEESEYVVITVRNEPALVPPILPPTAAERHNPWPTGFPE
CPEGTDSRDLGLKPDKEANRRPEQGSEACSAGCLGPASDASWKPQNAFCGDEKNKEAPQD
GSSRLPSCEVLGAGMKMDQQAVCELLKVEMPTRLPDRSVAWPCPDRHLREKPSLEKVTFQ
IGSFASPESDFESRMKKMEERVKACGPSLEASEAADVAQDPQVSRSPFKPGFQENVCCPQ
NRLSEGDEGESDKGFAEDRGSRNDMAADIAGQLSHAADLGTASHGAGGTGGRRLEATRGL
YVKAAEGPVLEPVAPRCVQRGPGLVAGANIPCGDDNKKANFRTEGDIPRNESSDSALGDS
DDEACASAMLDLGHGGDRTGGSLEVELPLPRSQSISTQNVRNFGRSLLAGYCPTYMPDLV
LHGTGSDEKLKQCLVADLVHTVHHPVLDEPIAEAVCIIADTDKWSVQVATSQRKVTDNMK
LGQDVLVSSQVSSLLQSILQLYKLHLPADFCIMHLEDRLQEMYLKSKMLSEYLRGHTRVH
VKELGVVLGIESNDLPLLTAIASTHSPYVAQILL
Function
Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3. Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling. In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3. Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3. Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy. In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90. Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90. Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. May play a role in the signal transduction pathway of apoptosis induced by O6-methylguanine-mispaired lesions.
Tissue Specificity
Widely expressed with highest levels in muscle, nasal mucosa, salivary gland, uvula, fat, liver, heart, placenta and pancreas . Moderately expressed in the lung, small intestine, kidney and brain. Lower levels detected in renal cell carcinoma than in normal kidney tissue . Higher levels detected in oncocytoma tumors than in normal kidney. Higher levels detected in renal cell carcinoma tumors than in normal kidney tissue .
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
Reactome Pathway
Amino acids regulate mTORC1 (R-HSA-9639288 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Biomarker [1]
Renal cell carcinoma DISQZ2X8 Definitive Biomarker [1]
Birt-Hogg-Dube syndrome DISIN5TD Strong Biomarker [2]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [3]
Hip dysplasia, Beukes type DISSTSIF Strong Biomarker [2]
Kidney cancer DISBIPKM moderate Biomarker [1]
Neoplasm DISZKGEW moderate Biomarker [1]
Renal carcinoma DISER9XT moderate Biomarker [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Folliculin-interacting protein 2 (FNIP2). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Folliculin-interacting protein 2 (FNIP2). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Folliculin-interacting protein 2 (FNIP2). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Folliculin-interacting protein 2 (FNIP2). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Folliculin-interacting protein 2 (FNIP2). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Folliculin-interacting protein 2 (FNIP2). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Folliculin-interacting protein 2 (FNIP2). [10]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Folliculin-interacting protein 2 (FNIP2). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Folliculin-interacting protein 2 (FNIP2). [12]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Folliculin-interacting protein 2 (FNIP2). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Folliculin-interacting protein 2 (FNIP2). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Folliculin-interacting protein 2 (FNIP2). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Folliculin-interacting protein 2 (FNIP2). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Folliculin-interacting protein 2 (FNIP2). [18]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Folliculin-interacting protein 2 (FNIP2). [19]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Folliculin-interacting protein 2 (FNIP2). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Folliculin-interacting protein 2 (FNIP2). [16]
------------------------------------------------------------------------------------

References

1 Nutrient-induced FNIP degradation by SCF-TRCP regulates FLCN complex localization and promotes renal cancer progression.Oncotarget. 2017 Feb 7;8(6):9947-9960. doi: 10.18632/oncotarget.14221.
2 Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3706-15. doi: 10.1073/pnas.1607592113. Epub 2016 Jun 14.
3 Identification and characterization of a novel folliculin-interacting protein FNIP2.Gene. 2008 May 31;415(1-2):60-7. doi: 10.1016/j.gene.2008.02.022. Epub 2008 Mar 4.
4 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
19 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.