General Information of Drug Off-Target (DOT) (ID: OT8H3S3G)

DOT Name Carboxymethylenebutenolidase homolog (CMBL)
Synonyms EC 3.1.-.-
Gene Name CMBL
UniProt ID
CMBL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.-.-
Pfam ID
PF01738
Sequence
MANEAYPCPCDIGHRLEYGGLGREVQVEHIKAYVTKSPVDAGKAVIVIQDIFGWQLPNTR
YIADMISGNGYTTIVPDFFVGQEPWDPSGDWSIFPEWLKTRNAQKIDREISAILKYLKQQ
CHAQKIGIVGFCWGGTAVHHLMMKYSEFRAGVSVYGIVKDSEDIYNLKNPTLFIFAENDV
VIPLKDVSLLTQKLKEHCKVEYQIKTFSGQTHGFVHRKREDCSPADKPYIDEARRNLIEW
LNKYM
Function
Cysteine hydrolase. Can convert the prodrug olmesartan medoxomil into its pharmacologically active metabolite olmerstatan, an angiotensin receptor blocker, in liver and intestine. May also activate beta-lactam antibiotics faropenem medoxomil and lenampicillin.
Tissue Specificity Widely expressed, with highest levels in liver, followed by kidney, small intestine and colon. Present in liver and intestine (at protein level).
KEGG Pathway
Metabolic pathways (hsa01100 )
Reactome Pathway
Phase I - Functionalization of compounds (R-HSA-211945 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [8]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [10]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Carboxymethylenebutenolidase homolog (CMBL). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Carboxymethylenebutenolidase homolog (CMBL). [12]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [13]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [13]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [13]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [13]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Carboxymethylenebutenolidase homolog (CMBL). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Carboxymethylenebutenolidase homolog (CMBL). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Carboxymethylenebutenolidase homolog (CMBL). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Carboxymethylenebutenolidase homolog (CMBL). [15]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Carboxymethylenebutenolidase homolog (CMBL). [17]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
11 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
18 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
19 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.