General Information of Drug Off-Target (DOT) (ID: OT9IJLX7)

DOT Name Polyprenol reductase (SRD5A3)
Synonyms EC 1.3.1.94; 3-oxo-5-alpha-steroid 4-dehydrogenase 3; EC 1.3.1.22; Steroid 5-alpha-reductase 2-like; Steroid 5-alpha-reductase 3; S5AR 3; SR type 3
Gene Name SRD5A3
Related Disease
SRD5A3-congenital disorder of glycosylation ( )
UniProt ID
PORED_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.3.1.22; 1.3.1.94
Pfam ID
PF02544
Sequence
MAPWAEAEHSALNPLRAVWLTLTAAFLLTLLLQLLPPGLLPGCAIFQDLIRYGKTKCGEP
SRPAACRAFDVPKRYFSHFYIISVLWNGFLLWCLTQSLFLGAPFPSWLHGLLRILGAAQF
QGGELALSAFLVLVFLWLHSLRRLFECLYVSVFSNVMIHVVQYCFGLVYYVLVGLTVLSQ
VPMDGRNAYITGKNLLMQARWFHILGMMMFIWSSAHQYKCHVILGNLRKNKAGVVIHCNH
RIPFGDWFEYVSSPNYLAELMIYVSMAVTFGFHNLTWWLVVTNVFFNQALSAFLSHQFYK
SKFVSYPKHRKAFLPFLF
Function
Plays a key role in early steps of protein N-linked glycosylation by being required for the conversion of polyprenol into dolichol. Dolichols are required for the synthesis of dolichol-linked monosaccharides and the oligosaccharide precursor used for N-glycosylation. Acts as a polyprenol reductase that promotes the reduction of the alpha-isoprene unit of polyprenols into dolichols in a NADP-dependent mechanism. Also able to convert testosterone (T) into 5-alpha-dihydrotestosterone (DHT).
Tissue Specificity Expressed in preadipocytes (at protein level) . Overexpressed in hormone-refractory prostate cancers (HRPC). Almost no or little expression in normal adult organs.
KEGG Pathway
Steroid hormone biosynthesis (hsa00140 )
N-Glycan biosynthesis (hsa00510 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Synthesis of Dolichyl-phosphate (R-HSA-446199 )
Defective SRD5A3 causes SRD5A3-CDG, KHRZ (R-HSA-4755579 )
Androgen biosynthesis (R-HSA-193048 )
BioCyc Pathway
MetaCyc:HS13249-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
SRD5A3-congenital disorder of glycosylation DISGHPPC Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Polyprenol reductase (SRD5A3). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Polyprenol reductase (SRD5A3). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Polyprenol reductase (SRD5A3). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Polyprenol reductase (SRD5A3). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Polyprenol reductase (SRD5A3). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Polyprenol reductase (SRD5A3). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Polyprenol reductase (SRD5A3). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Polyprenol reductase (SRD5A3). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Polyprenol reductase (SRD5A3). [10]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Polyprenol reductase (SRD5A3). [8]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Polyprenol reductase (SRD5A3). [8]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Polyprenol reductase (SRD5A3). [8]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Polyprenol reductase (SRD5A3). [8]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Polyprenol reductase (SRD5A3). [11]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Polyprenol reductase (SRD5A3). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Polyprenol reductase (SRD5A3). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Polyprenol reductase (SRD5A3). [14]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Polyprenol reductase (SRD5A3). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Polyprenol reductase (SRD5A3). [16]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of Polyprenol reductase (SRD5A3). [17]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Polyprenol reductase (SRD5A3). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Environ Int. 2015 Jan;74:60-70.
12 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
16 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
17 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.