General Information of Drug Off-Target (DOT) (ID: OT9PS4Q0)

DOT Name Parathymosin (PTMS)
Gene Name PTMS
Related Disease
Adenocarcinoma ( )
B-cell lymphoma ( )
Carcinoma ( )
Goiter ( )
Squamous cell carcinoma ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Hypoparathyroidism ( )
Malignant tumor of parathyroid gland ( )
Parathyroid gland carcinoma ( )
Primary hyperparathyroidism ( )
UniProt ID
PTMS_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03247
Sequence
MSEKSVEAAAELSAKDLKEKKEKVEEKASRKERKKEVVEEEENGAEEEEEETAEDGEEED
EGEEEDEEEEEEDDEGPALKRAAEEEDEADPKRQKTENGASA
Function Parathymosin may mediate immune function by blocking the effect of prothymosin alpha which confers resistance to certain opportunistic infections.

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Strong Biomarker [1]
B-cell lymphoma DISIH1YQ Strong Altered Expression [2]
Carcinoma DISH9F1N Strong Altered Expression [3]
Goiter DISLCGI6 Strong Altered Expression [3]
Squamous cell carcinoma DISQVIFL Strong Biomarker [1]
Thyroid cancer DIS3VLDH Strong Biomarker [3]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [3]
Thyroid tumor DISLVKMD Strong Biomarker [3]
Hypoparathyroidism DISICS0V Limited Biomarker [4]
Malignant tumor of parathyroid gland DIS4X92K Limited Biomarker [4]
Parathyroid gland carcinoma DISEER2W Limited Biomarker [4]
Primary hyperparathyroidism DISB4U1Q Limited Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Parathymosin (PTMS). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Parathymosin (PTMS). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Parathymosin (PTMS). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Parathymosin (PTMS). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Parathymosin (PTMS). [9]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Parathymosin (PTMS). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Parathymosin (PTMS). [11]
Selenium DM25CGV Approved Selenium increases the expression of Parathymosin (PTMS). [12]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Parathymosin (PTMS). [13]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Parathymosin (PTMS). [14]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Parathymosin (PTMS). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Parathymosin (PTMS). [6]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Parathymosin (PTMS). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Parathymosin (PTMS). [17]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Parathymosin (PTMS). [18]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of Parathymosin (PTMS). [19]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Parathymosin (PTMS). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Parathymosin (PTMS). [16]
------------------------------------------------------------------------------------

References

1 Prothymosin- and parathymosin expression predicts poor prognosis in squamous and adenosquamous carcinomas of the gallbladder.Oncol Lett. 2018 Apr;15(4):4485-4494. doi: 10.3892/ol.2018.7824. Epub 2018 Jan 19.
2 Relapsed diffuse large B-cell lymphoma present different genomic profiles between early and late relapses.Oncotarget. 2016 Dec 20;7(51):83987-84002. doi: 10.18632/oncotarget.9793.
3 Fine-needle aspiration biopsy-RT-PCR expression analysis of prothymosin alpha and parathymosin in thyroid: novel proliferation markers?.Neoplasma. 2007;54(1):57-62.
4 MANAGEMENT OF ENDOCRINE DISEASE: Unmet therapeutic, educational and scientific needs in parathyroid disorders.Eur J Endocrinol. 2019 Sep 1;181(3):P1-P19. doi: 10.1530/EJE-19-0316. Epub 2019 Jun 1.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog. 2006 Oct;45(10):752-63.
15 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.