General Information of Drug Off-Target (DOT) (ID: OTBBIRHZ)

DOT Name Thyroid hormone receptor beta (THRB)
Synonyms Nuclear receptor subfamily 1 group A member 2; c-erbA-2; c-erbA-beta
Gene Name THRB
Related Disease
Thyroid hormone resistance, generalized, autosomal dominant ( )
Obsolete resistance to thyroid hormone due to a mutation in thyroid hormone receptor beta ( )
Thyroid hormone resistance, generalized, autosomal recessive ( )
UniProt ID
THB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1BSX; 1N46; 1NAX; 1NQ0; 1NQ1; 1NQ2; 1NUO; 1Q4X; 1R6G; 1XZX; 1Y0X; 2J4A; 2NLL; 2PIN; 3D57; 3GWS; 3IMY; 3JZC; 4ZO1; 6KKB; 6KKE; 6KNU; 6KNV; 6KNW; 7WLX; 7WMG; 7WMH; 7WMJ; 7WML; 7WMN; 7WMO
Pfam ID
PF00104 ; PF00105
Sequence
MTPNSMTENGLTAWDKPKHCPDREHDWKLVGMSEACLHRKSHSERRSTLKNEQSSPHLIQ
TTWTSSIFHLDHDDVNDQSVSSAQTFQTEEKKCKGYIPSYLDKDELCVVCGDKATGYHYR
CITCEGCKGFFRRTIQKNLHPSYSCKYEGKCVIDKVTRNQCQECRFKKCIYVGMATDLVL
DDSKRLAKRKLIEENREKRRREELQKSIGHKPEPTDEEWELIKTVTEAHVATNAQGSHWK
QKRKFLPEDIGQAPIVNAPEGGKVDLEAFSHFTKIITPAITRVVDFAKKLPMFCELPCED
QIILLKGCCMEIMSLRAAVRYDPESETLTLNGEMAVTRGQLKNGGLGVVSDAIFDLGMSL
SSFNLDDTEVALLQAVLLMSSDRPGLACVERIEKYQDSFLLAFEHYINYRKHHVTHFWPK
LLMKVTDLRMIGACHASRFLHMKVECPTELFPPLFLEVFED
Function Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Thyroid hormone sig.ling pathway (hsa04919 )
Reactome Pathway
SUMOylation of intracellular receptors (R-HSA-4090294 )
Nuclear Receptor transcription pathway (R-HSA-383280 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Thyroid hormone resistance, generalized, autosomal dominant DISF731E Strong Autosomal dominant [1]
Obsolete resistance to thyroid hormone due to a mutation in thyroid hormone receptor beta DIS6VDRE Supportive Autosomal recessive [2]
Thyroid hormone resistance, generalized, autosomal recessive DISZBNI8 Limited Autosomal recessive [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Thyroid hormone receptor beta (THRB). [4]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Thyroid hormone receptor beta (THRB). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Thyroid hormone receptor beta (THRB). [18]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Thyroid hormone receptor beta (THRB). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Thyroid hormone receptor beta (THRB). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Thyroid hormone receptor beta (THRB). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Thyroid hormone receptor beta (THRB). [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Thyroid hormone receptor beta (THRB). [10]
Marinol DM70IK5 Approved Marinol decreases the expression of Thyroid hormone receptor beta (THRB). [11]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Thyroid hormone receptor beta (THRB). [12]
Ethanol DMDRQZU Approved Ethanol increases the expression of Thyroid hormone receptor beta (THRB). [13]
Mifepristone DMGZQEF Approved Mifepristone increases the expression of Thyroid hormone receptor beta (THRB). [14]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Thyroid hormone receptor beta (THRB). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Thyroid hormone receptor beta (THRB). [12]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Thyroid hormone receptor beta (THRB). [16]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Thyroid hormone receptor beta (THRB). [17]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Thyroid hormone receptor beta (THRB). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Thyroid hormone receptor beta (THRB). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Thyroid hormone receptor beta (THRB). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Thyroid hormone receptor beta (THRB). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Thyroid hormone receptor beta (THRB). [22]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Thyroid hormone receptor beta (THRB). [23]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the activity of Thyroid hormone receptor beta (THRB). [24]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Thyroid hormone receptor beta (THRB). [25]
KOJIC ACID DMP84CS Investigative KOJIC ACID decreases the expression of Thyroid hormone receptor beta (THRB). [26]
L-thyroxine DM83HWL Investigative L-thyroxine increases the expression of Thyroid hormone receptor beta (THRB). [27]
Triiodo-l-thyronine DMVJD1A Investigative Triiodo-l-thyronine increases the activity of Thyroid hormone receptor beta (THRB). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
EPI-001 DMYWV81 Investigative EPI-001 affects the binding of Thyroid hormone receptor beta (THRB). [28]
------------------------------------------------------------------------------------

References

1 Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab. 2005 May-Jun;16(4):176-82. doi: 10.1016/j.tem.2005.03.008.
2 Mutational Landscape of Resistance to Thyroid Hormone Beta (RTH). Mol Diagn Ther. 2019 Jun;23(3):353-368. doi: 10.1007/s40291-019-00399-w.
3 Nomenclature of thyroid hormone receptor beta-gene mutations in resistance to thyroid hormone: consensus statement from the first workshop on thyroid hormone resistance, July 10-11, 1993, Cambridge, United Kingdom. J Clin Endocrinol Metab. 1994 Apr;78(4):990-3. doi: 10.1210/jcem.78.4.8157732.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Effects of all-trans and 9-cis retinoic acid on differentiating human neural stem cells in vitro. Toxicology. 2023 Mar 15;487:153461. doi: 10.1016/j.tox.2023.153461. Epub 2023 Feb 16.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
9 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
10 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
11 Delta9-tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol Hum Reprod. 2006 May;12(5):321-33. doi: 10.1093/molehr/gal036. Epub 2006 Apr 5.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
14 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
15 Rational design and synthesis of a novel thyroid hormone antagonist that blocks coactivator recruitment. J Med Chem. 2002 Jul 18;45(15):3310-20. doi: 10.1021/jm0201013.
16 A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol. 2015 Jun 1;285(2):79-88.
17 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Endocrine activity of mycotoxins and mycotoxin mixtures. Food Chem Toxicol. 2016 Oct;96:107-16. doi: 10.1016/j.fct.2016.07.033. Epub 2016 Jul 29.
25 An in vitro strategy using multiple human induced pluripotent stem cell-derived models to assess the toxicity of chemicals: A case study on paraquat. Toxicol In Vitro. 2022 Jun;81:105333. doi: 10.1016/j.tiv.2022.105333. Epub 2022 Feb 16.
26 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
27 Establishment of transactivation assay systems using fish, amphibian, reptilian and human thyroid hormone receptors. J Appl Toxicol. 2013 Sep;33(9):991-1000. doi: 10.1002/jat.2825. Epub 2012 Oct 30.
28 Identification and Molecular Interaction Studies of Thyroid Hormone Receptor Disruptors among Household Dust Contaminants. Chem Res Toxicol. 2016 Aug 15;29(8):1345-54. doi: 10.1021/acs.chemrestox.6b00171. Epub 2016 Aug 2.
29 Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect. 2011 Aug;119(8):1142-8. doi: 10.1289/ehp.1002952. Epub 2011 May 4.