General Information of Drug Off-Target (DOT) (ID: OTCYIS0L)

DOT Name Protoheme IX farnesyltransferase, mitochondrial (COX10)
Synonyms EC 2.5.1.141; Heme O synthase
Gene Name COX10
Related Disease
Leigh syndrome ( )
Mitochondrial disease ( )
Alzheimer disease ( )
Charcot marie tooth disease ( )
Charcot-Marie-Tooth disease type 1A ( )
Coronary heart disease ( )
Focal segmental glomerulosclerosis ( )
Mitochondrial complex 4 deficiency, nuclear type 3 ( )
Renal tubular acidosis ( )
Leukodystrophy ( )
Cytochrome-c oxidase deficiency disease ( )
Anemia ( )
Hereditary neuropathy with liability to pressure palsies ( )
Non-insulin dependent diabetes ( )
UniProt ID
COX10_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.5.1.141
Pfam ID
PF01040
Sequence
MAASPHTLSSRLLTGCVGGSVWYLERRTIQDSPHKFLHLLRNVNKQWITFQHFSFLKRMY
VTQLNRSHNQQVRPKPEPVASPFLEKTSSGQAKAEIYEMRPLSPPSLSLSRKPNEKELIE
LEPDSVIEDSIDVGKETKEEKRWKEMKLQVYDLPGILARLSKIKLTALVVSTTAAGFALA
PGPFDWPCFLLTSVGTGLASCAANSINQFFEVPFDSNMNRTKNRPLVRGQISPLLAVSFA
TCCAVPGVAILTLGVNPLTGALGLFNIFLYTCCYTPLKRISIANTWVGAVVGAIPPVMGW
TAATGSLDAGAFLLGGILYSWQFPHFNALSWGLREDYSRGGYCMMSVTHPGLCRRVALRH
CLALLVLSAAAPVLDITTWTFPIMALPINAYISYLGFRFYVDADRRSSRRLFFCSLWHLP
LLLLLMLTCKRPSGGGDAGPPPS
Function Converts protoheme IX and farnesyl diphosphate to heme O.
KEGG Pathway
Oxidative phosphorylation (hsa00190 )
Porphyrin metabolism (hsa00860 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Thermogenesis (hsa04714 )
Reactome Pathway
Heme biosynthesis (R-HSA-189451 )
BioCyc Pathway
MetaCyc:HS00191-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Leigh syndrome DISWQU45 Definitive Autosomal recessive [1]
Mitochondrial disease DISKAHA3 Definitive Autosomal recessive [2]
Alzheimer disease DISF8S70 Strong Genetic Variation [3]
Charcot marie tooth disease DIS3BT2L Strong Genetic Variation [4]
Charcot-Marie-Tooth disease type 1A DISSRZG7 Strong Biomarker [5]
Coronary heart disease DIS5OIP1 Strong Biomarker [6]
Focal segmental glomerulosclerosis DISJNHH0 Strong Genetic Variation [7]
Mitochondrial complex 4 deficiency, nuclear type 3 DISLEHQO Strong Autosomal recessive [8]
Renal tubular acidosis DISE1NDR Strong Genetic Variation [9]
Leukodystrophy DISVY1TT moderate Genetic Variation [10]
Cytochrome-c oxidase deficiency disease DISK7N3G Supportive Autosomal recessive [8]
Anemia DISTVL0C Limited Altered Expression [10]
Hereditary neuropathy with liability to pressure palsies DISY0X1V Limited Genetic Variation [11]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Protoheme IX farnesyltransferase, mitochondrial (COX10). [13]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Protoheme IX farnesyltransferase, mitochondrial (COX10). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Protoheme IX farnesyltransferase, mitochondrial (COX10). [21]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [14]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [15]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [16]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [17]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [19]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [23]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [25]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [26]
Farnesol DMV2X1B Investigative Farnesol decreases the expression of Protoheme IX farnesyltransferase, mitochondrial (COX10). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene. Ann Neurol. 2004 Oct;56(4):560-4. doi: 10.1002/ana.20229.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Genetic association of the cytochrome c oxidase-related genes with Alzheimer's disease in Han Chinese.Neuropsychopharmacology. 2018 Oct;43(11):2264-2276. doi: 10.1038/s41386-018-0144-3. Epub 2018 Jul 6.
4 The Charcot-Marie-Tooth binary repeat contains a gene transcribed from the opposite strand of a partially duplicated region of the COX10 gene.Genomics. 1997 Nov 15;46(1):61-9. doi: 10.1006/geno.1997.5012.
5 Improved testing for CMT1A and HNPP using multiplex ligation-dependent probe amplification (MLPA) with rapid DNA preparations: comparison with the interphase FISH method.Hum Mutat. 2004 Aug;24(2):164-71. doi: 10.1002/humu.20072.
6 RNA-sequencing reveals that STRN, ZNF484 and WNK1 add to the value of mitochondrial MT-COI and COX10 as markers of unstable coronary artery disease.PLoS One. 2019 Dec 10;14(12):e0225621. doi: 10.1371/journal.pone.0225621. eCollection 2019.
7 Deletion of the Mitochondrial Complex-IV Cofactor Heme A:Farnesyltransferase Causes Focal Segmental Glomerulosclerosis and Interferon Response.Am J Pathol. 2018 Dec;188(12):2745-2762. doi: 10.1016/j.ajpath.2018.08.018. Epub 2018 Sep 28.
8 A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency. Hum Mol Genet. 2000 May 1;9(8):1245-9. doi: 10.1093/hmg/9.8.1245.
9 Sideroblastic anemia associated with multisystem mitochondrial disorders.Pediatr Blood Cancer. 2019 Apr;66(4):e27591. doi: 10.1002/pbc.27591. Epub 2018 Dec 26.
10 Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency.Hum Mol Genet. 2003 Oct 15;12(20):2693-702. doi: 10.1093/hmg/ddg284. Epub 2003 Aug 19.
11 The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs.Hum Mol Genet. 1997 Sep;6(9):1595-603. doi: 10.1093/hmg/6.9.1595.
12 Common variation in oxidative phosphorylation genes is not a major cause of insulin resistance or type 2 diabetes.Diabetologia. 2012 Feb;55(2):340-8. doi: 10.1007/s00125-011-2377-0. Epub 2011 Nov 18.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
15 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
18 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
19 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
20 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
21 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
22 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
25 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
26 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.