General Information of Drug Off-Target (DOT) (ID: OTDJRZ0P)

DOT Name Organic solute transporter subunit alpha (SLC51A)
Synonyms OST-alpha; Solute carrier family 51 subunit alpha
Gene Name SLC51A
Related Disease
Cholestasis, progressive familial intrahepatic, 6 ( )
UniProt ID
OSTA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03619
Sequence
MEPGRTQIKLDPRYTADLLEVLKTNYGIPSACFSQPPTAAQLLRALGPVELALTSILTLL
ALGSIAIFLEDAVYLYKNTLCPIKRRTLLWKSSAPTVVSVLCCFGLWIPRSLVLVEMTIT
SFYAVCFYLLMLVMVEGFGGKEAVLRTLRDTPMMVHTGPCCCCCPCCPRLLLTRKKLQLL
MLGPFQYAFLKITLTLVGLFLVPDGIYDPADISEGSTALWINTFLGVSTLLALWTLGIIS
RQARLHLGEQNMGAKFALFQVLLILTALQPSIFSVLANGGQIACSPPYSSKTRSQVMNCH
LLILETFLMTVLTRMYYRRKDHKVGYETFSSPDLDLNLKA
Function
Essential component of the Ost-alpha/Ost-beta complex, a heterodimer that acts as the intestinal basolateral transporter responsible for bile acid export from enterocytes into portal blood. Efficiently transports the major species of bile acids (taurocholate). Taurine conjugates are transported more efficiently across the basolateral membrane than glycine-conjugated bile acids. Can also transport steroids such as estrone 3-sulfate and dehydroepiandrosterone 3-sulfate, therefore playing a role in the enterohepatic circulation of sterols. Able to transport eicosanoids such as prostaglandin E2.
Tissue Specificity
Widely expressed with a high expression in ileum. Expressed in testis, colon, liver, small intestine, kidney, ovary and adrenal gland; and at low levels in heart, lung, brain, pituitary, thyroid gland, uterus, prostate, mammary gland and fat.
KEGG Pathway
Bile secretion (hsa04976 )
Reactome Pathway
Recycling of bile acids and salts (R-HSA-159418 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cholestasis, progressive familial intrahepatic, 6 DISY0XDY Limited Unknown [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Organic solute transporter subunit alpha (SLC51A) increases the response to substance of Cisplatin. [26]
------------------------------------------------------------------------------------
29 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Organic solute transporter subunit alpha (SLC51A). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Organic solute transporter subunit alpha (SLC51A). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Organic solute transporter subunit alpha (SLC51A). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Organic solute transporter subunit alpha (SLC51A). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Organic solute transporter subunit alpha (SLC51A). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Organic solute transporter subunit alpha (SLC51A). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Organic solute transporter subunit alpha (SLC51A). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Organic solute transporter subunit alpha (SLC51A). [9]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Organic solute transporter subunit alpha (SLC51A). [10]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Organic solute transporter subunit alpha (SLC51A). [11]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Organic solute transporter subunit alpha (SLC51A). [12]
Dexamethasone DMMWZET Approved Dexamethasone affects the expression of Organic solute transporter subunit alpha (SLC51A). [13]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Organic solute transporter subunit alpha (SLC51A). [14]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Organic solute transporter subunit alpha (SLC51A). [15]
Rifampicin DM5DSFZ Approved Rifampicin increases the expression of Organic solute transporter subunit alpha (SLC51A). [16]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid increases the expression of Organic solute transporter subunit alpha (SLC51A). [17]
Ritonavir DMU764S Approved Ritonavir decreases the expression of Organic solute transporter subunit alpha (SLC51A). [18]
Chenodiol DMQ8JIK Approved Chenodiol increases the expression of Organic solute transporter subunit alpha (SLC51A). [19]
Bosentan DMIOGBU Approved Bosentan increases the expression of Organic solute transporter subunit alpha (SLC51A). [20]
Deoxycholic acid DM3GYAL Approved Deoxycholic acid increases the expression of Organic solute transporter subunit alpha (SLC51A). [17]
Clavulanate DM2FGRT Approved Clavulanate decreases the expression of Organic solute transporter subunit alpha (SLC51A). [21]
Budesonide DMJIBAW Approved Budesonide increases the expression of Organic solute transporter subunit alpha (SLC51A). [13]
Cholic acid DM7OKQV Approved Cholic acid increases the expression of Organic solute transporter subunit alpha (SLC51A). [17]
Amoxicillin DMUYNEI Approved Amoxicillin increases the expression of Organic solute transporter subunit alpha (SLC51A). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Organic solute transporter subunit alpha (SLC51A). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Organic solute transporter subunit alpha (SLC51A). [24]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Organic solute transporter subunit alpha (SLC51A). [21]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Organic solute transporter subunit alpha (SLC51A). [7]
DM9CEI5 increases the expression of Organic solute transporter subunit alpha (SLC51A). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Organic solute transporter subunit alpha (SLC51A). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Organic solute transporter subunit alpha (SLC51A). [25]
------------------------------------------------------------------------------------

References

1 Organic Solute Transporter Alpha Deficiency: A Disorder With Cholestasis, Liver Fibrosis, and Congenital Diarrhea. Hepatology. 2020 May;71(5):1879-1882. doi: 10.1002/hep.31087.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
10 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
11 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
12 Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol. 2022 Oct;96(10):2739-2754. doi: 10.1007/s00204-022-03338-7. Epub 2022 Jul 26.
13 Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver. Biopharm Drug Dispos. 2009 Jul;30(5):241-58.
14 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
15 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
16 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
17 Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol Sci. 2014 Oct;141(2):538-46. doi: 10.1093/toxsci/kfu151. Epub 2014 Jul 23.
18 Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016 Aug 5;255:31-44.
19 Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1124-30. doi: 10.1152/ajpgi.00539.2005. Epub 2006 Jan 19.
20 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
21 Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol. 2021 Dec;158:112664. doi: 10.1016/j.fct.2021.112664. Epub 2021 Nov 9.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
24 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
25 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
26 Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans. PLoS One. 2011;6(7):e21920. doi: 10.1371/journal.pone.0021920. Epub 2011 Jul 6.