General Information of Drug Off-Target (DOT) (ID: OTEEHY1D)

DOT Name Syndecan-2 (SDC2)
Synonyms SYND2; Fibroglycan; Heparan sulfate proteoglycan core protein; HSPG; CD antigen CD362
Gene Name SDC2
UniProt ID
SDC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6ITH
Pfam ID
PF01034
Sequence
MRRAWILLTLGLVACVSAESRAELTSDKDMYLDNSSIEEASGVYPIDDDDYASASGSGAD
EDVESPELTTSRPLPKILLTSAAPKVETTTLNIQNKIPAQTKSPEETDKEKVHLSDSERK
MDPAEEDTNVYTEKHSDSLFKRTEVLAAVIAGGVIGFLFAIFLILLLVYRMRKKDEGSYD
LGERKPSSAAYQKAPTKEFYA
Function Cell surface proteoglycan which regulates dendritic arbor morphogenesis.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Cytoskeleton in muscle cells (hsa04820 )
Malaria (hsa05144 )
Proteoglycans in cancer (hsa05205 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
HS-GAG biosynthesis (R-HSA-2022928 )
HS-GAG degradation (R-HSA-2024096 )
Cell surface interactions at the vascular wall (R-HSA-202733 )
Syndecan interactions (R-HSA-3000170 )
Defective B4GALT7 causes EDS, progeroid type (R-HSA-3560783 )
Defective B3GAT3 causes JDSSDHD (R-HSA-3560801 )
Defective EXT2 causes exostoses 2 (R-HSA-3656237 )
Defective EXT1 causes exostoses 1, TRPS2 and CHDS (R-HSA-3656253 )
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA-381426 )
EPHB-mediated forward signaling (R-HSA-3928662 )
Defective B3GALT6 causes EDSP2 and SEMDJL1 (R-HSA-4420332 )
Post-translational protein phosphorylation (R-HSA-8957275 )
Attachment and Entry (R-HSA-9694614 )
Retinoid metabolism and transport (R-HSA-975634 )
A tetrasaccharide linker sequence is required for GAG synthesis (R-HSA-1971475 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Syndecan-2 (SDC2) affects the response to substance of Cisplatin. [24]
Mitoxantrone DMM39BF Approved Syndecan-2 (SDC2) affects the response to substance of Mitoxantrone. [24]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Syndecan-2 (SDC2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Syndecan-2 (SDC2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Syndecan-2 (SDC2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Syndecan-2 (SDC2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Syndecan-2 (SDC2). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Syndecan-2 (SDC2). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Syndecan-2 (SDC2). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Syndecan-2 (SDC2). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Syndecan-2 (SDC2). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Syndecan-2 (SDC2). [1]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Syndecan-2 (SDC2). [11]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Syndecan-2 (SDC2). [12]
Paclitaxel DMLB81S Approved Paclitaxel increases the expression of Syndecan-2 (SDC2). [13]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Syndecan-2 (SDC2). [14]
Ardeparin DMYRX8B Approved Ardeparin decreases the expression of Syndecan-2 (SDC2). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Syndecan-2 (SDC2). [16]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Syndecan-2 (SDC2). [17]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Syndecan-2 (SDC2). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Syndecan-2 (SDC2). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Syndecan-2 (SDC2). [19]
Eugenol DM7US1H Patented Eugenol increases the expression of Syndecan-2 (SDC2). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Syndecan-2 (SDC2). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Syndecan-2 (SDC2). [21]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Syndecan-2 (SDC2). [22]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Syndecan-2 (SDC2). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic decreases the ubiquitination of Syndecan-2 (SDC2). [7]
------------------------------------------------------------------------------------

References

1 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of the global gene expression profiles produced by methylparaben, n-butylparaben and 17beta-oestradiol in MCF7 human breast cancer cells. J Appl Toxicol. 2007 Jan-Feb;27(1):67-77. doi: 10.1002/jat.1200.
7 Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome. Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Gene expression profile changes in NB4 cells induced by arsenic trioxide. Acta Pharmacol Sin. 2003 Jul;24(7):646-50.
11 Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006 Dec 1;66(23):11187-93. doi: 10.1158/0008-5472.CAN-06-1274.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009 Aug 21;138(4):645-659. doi: 10.1016/j.cell.2009.06.034. Epub 2009 Aug 13.
14 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
15 Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol Lett. 2016 Jan 5;240(1):32-42. doi: 10.1016/j.toxlet.2015.10.005. Epub 2015 Oct 22.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
18 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
23 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
24 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.