General Information of Drug Off-Target (DOT) (ID: OTEK6BZR)

DOT Name FRAS1-related extracellular matrix protein 2 (FREM2)
Synonyms ECM3 homolog
Gene Name FREM2
Related Disease
Fraser syndrome 1 ( )
Renal agenesis ( )
Renal hypodysplasia/aplasia 1 ( )
Bilateral renal agenesis ( )
Congenital diaphragmatic hernia ( )
Cryptophthalmia ( )
Disorder of orbital region ( )
Glioblastoma multiforme ( )
Gliosarcoma ( )
Narcolepsy ( )
Oculotrichoanal syndrome ( )
Polydactyly ( )
Prostate adenocarcinoma ( )
Fraser syndrome 2 ( )
Fraser syndrome ( )
Renal agenesis, unilateral ( )
Adult glioblastoma ( )
UniProt ID
FREM2_HUMAN
Pfam ID
PF16184 ; PF03160 ; PF19309
Sequence
MHSAGTPGLSSRRTGNSTSFQPGPPPPPRLLLLLLLLLSLVSRVPAQPAAFGRALLSPGL
AGAAGVPAEEAIVLANRGLRVPFGREVWLDPLHDLVLQVQPGDRCAVSVLDNDALAQRPG
RLSPKRFPCDFGPGEVRYSHLGARSPSRDRVRLQLRYDAPGGAVVLPLVLEVEVVFTQLE
VVTRNLPLVVEELLGTSNALDARSLEFAFQPETEECRVGILSGLGALPRYGELLHYPQVP
GGAREGGAPETLLMDCKAFQELGVRYRHTAASRSPNRDWIPMVVELRSRGAPVGSPALKR
EHFQVLVRIRGGAENTAPKPSFVAMMMMEVDQFVLTALTPDMLAAEDAESPSDLLIFNLT
SPFQPGQGYLVSTDDRSLPLSSFTQRDLRLLKIAYQPPSEDSDQERLFELELEVVDLEGA
ASDPFAFMVVVKPMNTMAPVVTRNTGLILYEGQSRPLTGPAGSGPQNLVISDEDDLEAVR
LEVVAGLRHGHLVILGASSGSSAPKSFTVAELAAGQVVYQHDDRDGSLSDNLVLRMVDGG
GRHQVQFLFPITLVPVDDQPPVLNANTGLTLAEGETVPILPLSLSATDMDSDDSLLLFVL
ESPFLTTGHLLLRQTHPPHEKQELLRGLWRKEGAFYERTVTEWQQQDITEGRLFYRHSGP
HSPGPVTDQFTFRVQDNHDPPNQSGLQRFVIRIHPVDRLPPELGSGCPLRMVVQESQLTP
LRKKWLRYTDLDTDDRELRYTVTQPPTDTDENHLPAPLGTLVLTDNPSVVVTHFTQAQIN
HHKIAYRPPGQELGVATRVAQFQFQVEDRAGNVAPGTFTLYLHPVDNQPPEILNTGFTIQ
EKGHHILSETELHVNDVDTDVAHISFTLTQAPKHGHMRVSGQILHVGGLFHLEDIKQGRV
SYAHNGDKSLTDSCSLEVSDRHHVVPITLRVNVRPVDDEVPILSHPTGTLESYLDVLENG
ATEITANVIKGTNEETDDLMLTFLLEDPPLYGEILVNGIPAEQFTQRDILEGSVVYTHTS
GEIGLLPKADSFNLSLSDMSQEWRIGGNTIQGVTIWVTILPVDSQAPEIFVGEQLIVMEG
DKSVITSVHISAEDVDSLNDDILCTIVIQPTSGYVENISPAPGSEKSRAGIAISAFNLKD
LRQGHINYVQSVHKGVEPVEDRFVFRCSDGINFSERQFFPIVIIPTNDEQPEMFMREFMV
MEGMSLVIDTPILNAADADVPLDDLTFTITQFPTHGHIMNQLINGTVLVESFTLDQIIES
SSIIYEHDDSETQEDSFVIKLTDGKHSVEKTVLIIVIPVDDETPRMTINNGLEIEIGDTK
IINNKILMATDLDSEDKSLVYIIRYGPGHGLLQRRKPTGAFENITLGMNFTQDEVDRNLI
QYVHLGQEGIRDLIKFDVTDGINPLIDRYFYVSIGSIDIVFPDVISKGVSLKEGGKVTLT
TDLLSTSDLNSPDENLVFTITRAPMRGHLECTDQPGVSITSFTQLQLAGNKIYYIHTADD
EVKMDSFEFQVTDGRNPVFRTFRISISDVDNKKPVVTIHKLVVSESENKLITPFELTVED
RDTPDKLLKFTITQVPIHGHLLFNNTRPVMVFTKQDLNENLISYKHDGTESSEDSFSFTV
TDGTHTDFYVFPDTVFETRRPQVMKIQVLAVDNSVPQIAVNKGASTLRTLATGHLGFMIT
SKILKVEDRDSLHISLRFIVTEAPQHGYLLNLDKGNHSITQFTQADIDDMKICYVLREGA
NATSDMFYFAVEDGGGNKLTYQNFRLNWAWISFEKEYYLVNEDSKFLDVVLKRRGYLGET
SFISIGTRDRTAEKDKDFKGKAQKQVQFNPGQTRATWRVRILSDGEHEQSETFQVVLSEP
VLAALEFPTVATVEIVDPGDEPTVFIPQSKYSVEEDVGELFIPIRRSGDVSQELMVVCYT
QQGTATGTVPTSVLSYSDYISRPEDHTSVVRFDKDEREKLCRIVIIDDSLYEEEETFHVL
LSMPMGGRIGSEFPGAQVTIVPDKDDEPIFYFGDVEYSVDESAGYVEVQVWRTGTDLSKS
SSVTVRSRKTDPPSADAGTDYVGISRNLDFAPGVNMQPVRVVILDDLGQPALEGIEKFEL
VLRMPMNAALGEPSKATVSINDSVSDLPKMQFKERIYTGSESDGQIVTMIHRTGDVQYRS
SVRCYTRQGSAQVMMDFEERPNTDTSIITFLPGETEKPCILELMDDVLYEEVEELRLVLG
TPQSNSPFGAAVGEQNETLIRIRDDADKTVIKFGETKFSVTEPKEPGESVVIRIPVIRQG
DTSKVSIVRVHTKDGSATSGEDYHPVSEEIEFKEGETQHVVEIEVTFDGVREMREAFTVH
LKPDENMIAEMQLTKAIVYIEEMSSMADVTFPSVPQIVSLLMYDDTSKAKESAEPMSGYP
VICITACNPKYSDYDKTGSICASENINDTLTRYRWLISAPAGPDGVTSPMREVDFDTFFT
SSKMVTLDSIYFQPGSRVQCAARAVNTNGDEGLELMSPIVTISREEGLCQPRVPGVVGAE
PFSAKLRYTGPEDADYTNLIKLTVTMPHIDGMLPVISTRELSNFELTLSPDGTRVGNHKC
SNLLDYTEVKTHYGFLTDATKNPEIIGETYPYQYSLSIRGSTTLRFYRNLNLEACLWEFV
SYYDMSELLADCGGTIGTDGQVLNLVQSYVTLRVPLYVSYVFHSPVGVGGWQHFDLKSEL
RLTFVYDTAILWNDGIGSPPEAELQGSLYPTSMRIGDEGRLAVHFKTEAQFHGLFVLSHP
ASFTSSVIMSADHPGLTFSLRLIRSEPTYNQPVQQWSFVSDFAVRDYSGTYTVKLVPCTA
PSHQEYRLPVTCNPREPVTFDLDIRFQQVSDPVAAEFSLNTQMYLLSKKSLWLSDGSMGF
GQESDVAFAEGDIIYGRVMVDPVQNLGDSFYCSIEKVFLCTGADGYVPKYSPMNAEYGCL
ADSPSLLYRFKIVDKAQPETQATSFGNVLFNAKLAVDDPEAILLVNQPGSDGFKVDSTPL
FQVALGREWYIHTIYTVRSKDNANRGIGKRSVEYHSLVSQGKPQSTTKSRKKREIRSTPS
LAWEIGAENSRGTNIQHIALDRTKRQIPHGRAPPDGILPWELNSPSSAVSLVTVVGGTTV
GLLTICLTVIAVLMCRGKESFRGKDAPKGSSSSEPMVPPQSHHNDSSEV
Function
Extracellular matrix protein required for maintenance of the integrity of the skin epithelium and for maintenance of renal epithelia. Required for epidermal adhesion. Involved in the development of eyelids and the anterior segment of the eyeballs.
KEGG Pathway
ECM-receptor interaction (hsa04512 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fraser syndrome 1 DISOH38D Definitive Autosomal recessive [1]
Renal agenesis DIS0M9AF Definitive Biomarker [2]
Renal hypodysplasia/aplasia 1 DISOH8XN Definitive Biomarker [2]
Bilateral renal agenesis DISOR5IA Strong Biomarker [2]
Congenital diaphragmatic hernia DIS0IPVU Strong Biomarker [3]
Cryptophthalmia DISUKC3X Strong Biomarker [2]
Disorder of orbital region DISH0ECJ Strong Biomarker [4]
Glioblastoma multiforme DISK8246 Strong Altered Expression [5]
Gliosarcoma DIS985MG Strong Biomarker [6]
Narcolepsy DISLCNLI Strong Genetic Variation [7]
Oculotrichoanal syndrome DIS5GWU7 Strong Biomarker [4]
Polydactyly DIS25BMZ Strong Biomarker [4]
Prostate adenocarcinoma DISBZYU8 Strong Genetic Variation [8]
Fraser syndrome 2 DISFCCZM Moderate Autosomal recessive [9]
Fraser syndrome DISCLC2B Supportive Autosomal recessive [10]
Renal agenesis, unilateral DIS53ZJ8 Supportive Autosomal dominant [11]
Adult glioblastoma DISVP4LU Limited Biomarker [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of FRAS1-related extracellular matrix protein 2 (FREM2). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of FRAS1-related extracellular matrix protein 2 (FREM2). [18]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [14]
Tretinoin DM49DUI Approved Tretinoin increases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [15]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [16]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [14]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [16]
Ethanol DMDRQZU Approved Ethanol increases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [17]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [16]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of FRAS1-related extracellular matrix protein 2 (FREM2). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
2 The role of Fras1/Frem proteins in the structure and function of basement membrane.Int J Biochem Cell Biol. 2011 Apr;43(4):487-95. doi: 10.1016/j.biocel.2010.12.016. Epub 2010 Dec 21.
3 The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia.Hum Mol Genet. 2018 Jun 15;27(12):2064-2075. doi: 10.1093/hmg/ddy110.
4 Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet. 2005 May;37(5):520-5. doi: 10.1038/ng1549. Epub 2005 Apr 17.
5 High FREM2 Gene and Protein Expression Are Associated with Favorable Prognosis of IDH-WT Glioblastomas.Cancers (Basel). 2019 Jul 27;11(8):1060. doi: 10.3390/cancers11081060.
6 Amplification of the STOML3, FREM2, and LHFP genes is associated with mesenchymal differentiation in gliosarcoma.Am J Pathol. 2012 May;180(5):1816-23. doi: 10.1016/j.ajpath.2012.01.027.
7 Genome-wide association database developed in the Japanese Integrated Database Project.J Hum Genet. 2009 Sep;54(9):543-6. doi: 10.1038/jhg.2009.68. Epub 2009 Jul 24.
8 Integrative analysis of cancer driver genes in prostate adenocarcinoma.Mol Med Rep. 2019 Apr;19(4):2707-2715. doi: 10.3892/mmr.2019.9902. Epub 2019 Jan 28.
9 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
10 Molecular study of 33 families with Fraser syndrome new data and mutation review. Am J Med Genet A. 2008 Sep 1;146A(17):2252-7. doi: 10.1002/ajmg.a.32440.
11 Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int. 2012 Jan;81(2):196-200. doi: 10.1038/ki.2011.315. Epub 2011 Sep 7.
12 Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Glioblastoma Marker Candidates.Int J Mol Sci. 2018 May 4;19(5):1369. doi: 10.3390/ijms19051369.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
16 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
17 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.