General Information of Drug Off-Target (DOT) (ID: OTEVPYNY)

DOT Name Inactive phospholipase D5 (PLD5)
Synonyms Inactive PLD 5; Inactive choline phosphatase 5; Inactive phosphatidylcholine-hydrolyzing phospholipase D5; PLDc
Gene Name PLD5
Related Disease
Neoplasm ( )
Autism ( )
Leiomyoma ( )
Uterine fibroids ( )
UniProt ID
PLD5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13918
Sequence
MEIRQHEWLSASPHEGFEQMRLKSRPKEPSPSLTRVGANFYSSVKQQDYSASVWLRRKDK
LEHSQQKCIVIFALVCCFAILVALIFSAVDIMGEDEDGLSEKNCQNKCRIALVENIPEGL
NYSENAPFHLSLFQGWMNLLNMAKKSVDIVSSHWDLNHTHPSACQGQRLFEKLLQLTSQN
IEIKLVSDVTADSKVLEALKLKGAEVTYMNMTAYNKGRLQSSFWIVDKQHVYIGSAGLDW
QSLGQMKELGVIFYNCSCLVLDLQRIFALYSSLKFKSRVPQTWSKRLYGVYDNEKKLQLQ
LNETKSQAFVSNSPKLFCPKNRSFDIDAIYSVIDDAKQYVYIAVMDYLPISSTSTKRTYW
PDLDAKIREALVLRSVRVRLLLSFWKETDPLTFNFISSLKAICTEIANCSLKVKFFDLER
ENACATKEQKNHTFPRLNRNKYMVTDGAAYIGNFDWVGNDFTQNAGTGLVINQADVRNNR
SIIKQLKDVFERDWYSPYAKTLQPTKQPNCSSLFKLKPLSNKTATDDTGGKDPRNV

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Biomarker [1]
Autism DISV4V1Z Strong Biomarker [2]
Leiomyoma DISLDDFN Strong Altered Expression [3]
Uterine fibroids DISBZRMJ Strong Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Inactive phospholipase D5 (PLD5). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Inactive phospholipase D5 (PLD5). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Inactive phospholipase D5 (PLD5). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Inactive phospholipase D5 (PLD5). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Inactive phospholipase D5 (PLD5). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Inactive phospholipase D5 (PLD5). [9]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Inactive phospholipase D5 (PLD5). [10]
Triclosan DMZUR4N Approved Triclosan increases the expression of Inactive phospholipase D5 (PLD5). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Inactive phospholipase D5 (PLD5). [12]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Inactive phospholipase D5 (PLD5). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Inactive phospholipase D5 (PLD5). [14]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Inactive phospholipase D5 (PLD5). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Inactive phospholipase D5 (PLD5). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Inactive phospholipase D5 (PLD5). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Inactive phospholipase D5 (PLD5). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Multiple hits for the association of uterine fibroids on human chromosome 1q43.PLoS One. 2013;8(3):e58399. doi: 10.1371/journal.pone.0058399. Epub 2013 Mar 14.
2 A genome-wide scan for common alleles affecting risk for autism.Hum Mol Genet. 2010 Oct 15;19(20):4072-82. doi: 10.1093/hmg/ddq307. Epub 2010 Jul 27.
3 Fine mapping of the uterine leiomyoma locus on 1q43 close to a lncRNA in the RGS7-FH interval.Endocr Relat Cancer. 2015 Aug;22(4):633-43. doi: 10.1530/ERC-15-0208. Epub 2015 Jun 25.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells. Arch Toxicol. 2013 Jun;87(6):1103-13. doi: 10.1007/s00204-013-1018-4. Epub 2013 Feb 10.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.