General Information of Drug Off-Target (DOT) (ID: OTF1XSV1)

DOT Name Breast cancer type 2 susceptibility protein (BRCA2)
Synonyms Fanconi anemia group D1 protein
Gene Name BRCA2
Related Disease
Breast-ovarian cancer, familial, susceptibility to, 2 ( )
Familial prostate carcinoma ( )
Fanconi anemia complementation group D1 ( )
Pancreatic cancer, susceptibility to, 2 ( )
Sarcoma ( )
Fanconi's anemia ( )
Hereditary breast ovarian cancer syndrome ( )
UniProt ID
BRCA2_HUMAN
PDB ID
1N0W; 3EU7; 6GY2; 6HQU; 7BDX; 7LDG; 8BR9; 8C3J; 8C3N; 8PBC; 8PBD; 8R2G
Pfam ID
PF09169 ; PF09103 ; PF09104 ; PF00634 ; PF21318 ; PF09121
Sequence
MPIGSKERPTFFEIFKTRCNKADLGPISLNWFEELSSEAPPYNSEPAEESEHKNNNYEPN
LFKTPQRKPSYNQLASTPIIFKEQGLTLPLYQSPVKELDKFKLDLGRNVPNSRHKSLRTV
KTKMDQADDVSCPLLNSCLSESPVVLQCTHVTPQRDKSVVCGSLFHTPKFVKGRQTPKHI
SESLGAEVDPDMSWSSSLATPPTLSSTVLIVRNEEASETVFPHDTTANVKSYFSNHDESL
KKNDRFIASVTDSENTNQREAASHGFGKTSGNSFKVNSCKDHIGKSMPNVLEDEVYETVV
DTSEEDSFSLCFSKCRTKNLQKVRTSKTRKKIFHEANADECEKSKNQVKEKYSFVSEVEP
NDTDPLDSNVANQKPFESGSDKISKEVVPSLACEWSQLTLSGLNGAQMEKIPLLHISSCD
QNISEKDLLDTENKRKKDFLTSENSLPRISSLPKSEKPLNEETVVNKRDEEQHLESHTDC
ILAVKQAISGTSPVASSFQGIKKSIFRIRESPKETFNASFSGHMTDPNFKKETEASESGL
EIHTVCSQKEDSLCPNLIDNGSWPATTTQNSVALKNAGLISTLKKKTNKFIYAIHDETSY
KGKKIPKDQKSELINCSAQFEANAFEAPLTFANADSGLLHSSVKRSCSQNDSEEPTLSLT
SSFGTILRKCSRNETCSNNTVISQDLDYKEAKCNKEKLQLFITPEADSLSCLQEGQCEND
PKSKKVSDIKEEVLAAACHPVQHSKVEYSDTDFQSQKSLLYDHENASTLILTPTSKDVLS
NLVMISRGKESYKMSDKLKGNNYESDVELTKNIPMEKNQDVCALNENYKNVELLPPEKYM
RVASPSRKVQFNQNTNLRVIQKNQEETTSISKITVNPDSEELFSDNENNFVFQVANERNN
LALGNTKELHETDLTCVNEPIFKNSTMVLYGDTGDKQATQVSIKKDLVYVLAEENKNSVK
QHIKMTLGQDLKSDISLNIDKIPEKNNDYMNKWAGLLGPISNHSFGGSFRTASNKEIKLS
EHNIKKSKMFFKDIEEQYPTSLACVEIVNTLALDNQKKLSKPQSINTVSAHLQSSVVVSD
CKNSHITPQMLFSKQDFNSNHNLTPSQKAEITELSTILEESGSQFEFTQFRKPSYILQKS
TFEVPENQMTILKTTSEECRDADLHVIMNAPSIGQVDSSKQFEGTVEIKRKFAGLLKNDC
NKSASGYLTDENEVGFRGFYSAHGTKLNVSTEALQKAVKLFSDIENISEETSAEVHPISL
SSSKCHDSVVSMFKIENHNDKTVSEKNNKCQLILQNNIEMTTGTFVEEITENYKRNTENE
DNKYTAASRNSHNLEFDGSDSSKNDTVCIHKDETDLLFTDQHNICLKLSGQFMKEGNTQI
KEDLSDLTFLEVAKAQEACHGNTSNKEQLTATKTEQNIKDFETSDTFFQTASGKNISVAK
ESFNKIVNFFDQKPEELHNFSLNSELHSDIRKNKMDILSYEETDIVKHKILKESVPVGTG
NQLVTFQGQPERDEKIKEPTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQGTSEITSFS
HQWAKTLKYREACKDLELACETIEITAAPKCKEMQNSLNNDKNLVSIETVVPPKLLSDNL
CRQTENLKTSKSIFLKVKVHENVEKETAKSPATCYTNQSPYSVIENSALAFYTSCSRKTS
VSQTSLLEAKKWLREGIFDGQPERINTADYVGNYLYENNSNSTIAENDKNHLSEKQDTYL
SNSSMSNSYSYHSDEVYNDSGYLSKNKLDSGIEPVLKNVEDQKNTSFSKVISNVKDANAY
PQTVNEDICVEELVTSSSPCKNKNAAIKLSISNSNNFEVGPPAFRIASGKIVCVSHETIK
KVKDIFTDSFSKVIKENNENKSKICQTKIMAGCYEALDDSEDILHNSLDNDECSTHSHKV
FADIQSEEILQHNQNMSGLEKVSKISPCDVSLETSDICKCSIGKLHKSVSSANTCGIFST
ASGKSVQVSDASLQNARQVFSEIEDSTKQVFSKVLFKSNEHSDQLTREENTAIRTPEHLI
SQKGFSYNVVNSSAFSGFSTASGKQVSILESSLHKVKGVLEEFDLIRTEHSLHYSPTSRQ
NVSKILPRVDKRNPEHCVNSEMEKTCSKEFKLSNNLNVEGGSSENNHSIKVSPYLSQFQQ
DKQQLVLGTKVSLVENIHVLGKEQASPKNVKMEIGKTETFSDVPVKTNIEVCSTYSKDSE
NYFETEAVEIAKAFMEDDELTDSKLPSHATHSLFTCPENEEMVLSNSRIGKRRGEPLILV
GEPSIKRNLLNEFDRIIENQEKSLKASKSTPDGTIKDRRLFMHHVSLEPITCVPFRTTKE
RQEIQNPNFTAPGQEFLSKSHLYEHLTLEKSSSNLAVSGHPFYQVSATRNEKMRHLITTG
RPTKVFVPPFKTKSHFHRVEQCVRNINLEENRQKQNIDGHGSDDSKNKINDNEIHQFNKN
NSNQAVAVTFTKCEEEPLDLITSLQNARDIQDMRIKKKQRQRVFPQPGSLYLAKTSTLPR
ISLKAAVGGQVPSACSHKQLYTYGVSKHCIKINSKNAESFQFHTEDYFGKESLWTGKGIQ
LADGGWLIPSNDGKAGKEEFYRALCDTPGVDPKLISRIWVYNHYRWIIWKLAAMECAFPK
EFANRCLSPERVLLQLKYRYDTEIDRSRRSAIKKIMERDDTAAKTLVLCVSDIISLSANI
SETSSNKTSSADTQKVAIIELTDGWYAVKAQLDPPLLAVLKNGRLTVGQKIILHGAELVG
SPDACTPLEAPESLMLKISANSTRPARWYTKLGFFPDPRPFPLPLSSLFSDGGNVGCVDV
IIQRAYPIQWMEKTSSGLYIFRNEREEEKEAAKYVEAQQKRLEALFTKIQEEFEEHEENT
TKPYLPSRALTRQQVRALQDGAELYEAVKNAADPAYLEGYFSEEQLRALNNHRQMLNDKK
QAQIQLEIRKAMESAEQKEQGLSRDVTTVWKLRIVSYSKKEKDSVILSIWRPSSDLYSLL
TEGKRYRIYHLATSKSKSKSERANIQLAATKKTQYQQLPVSDEILFQIYQPREPLHFSKF
LDPDFQPSCSEVDLIGFVVSVVKKTGLAPFVYLSDECYNLLAIKFWIDLNEDIIKPHMLI
AASNLQWRPESKSGLLTLFAGDFSVFSASPKEGHFQETFNKMKNTVENIDILCNEAENKL
MHILHANDPKWSTPTKDCTSGPYTAQIIPGTGNKLLMSSPNCEIYYQSPLSLCMAKRKSV
STPVSAQMTSKSCKGEKEIDDQKNCKKRRALDFLSRLPLPPPVSPICTFVSPAAQKAFQP
PRSCGTKYETPIKKKELNSPQMTPFKKFNEISLLESNSIADEELALINTQALLSGSTGEK
QFISVSESTRTAPTSSEDYLRLKRRCTTSLIKEQESSQASTEECEKNKQDTITTKKYI
Function
Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination.
Tissue Specificity Highest levels of expression in breast and thymus, with slightly lower levels in lung, ovary and spleen.
KEGG Pathway
Homologous recombi.tion (hsa03440 )
Fanconi anemia pathway (hsa03460 )
Pathways in cancer (hsa05200 )
Pancreatic cancer (hsa05212 )
Breast cancer (hsa05224 )
Reactome Pathway
HDR through Homologous Recombination (HRR) (R-HSA-5685942 )
Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) (R-HSA-5693554 )
Resolution of D-loop Structures through Holliday Junction Intermediates (R-HSA-5693568 )
Homologous DNA Pairing and Strand Exchange (R-HSA-5693579 )
Presynaptic phase of homologous DNA pairing and strand exchange (R-HSA-5693616 )
Meiotic recombination (R-HSA-912446 )
Defective homologous recombination repair (HRR) due to BRCA1 loss of function (R-HSA-9701192 )
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function (R-HSA-9704331 )
Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function (R-HSA-9704646 )
Impaired BRCA2 translocation to the nucleus (R-HSA-9709275 )
Impaired BRCA2 binding to RAD51 (R-HSA-9709570 )
Impaired BRCA2 binding to PALB2 (R-HSA-9709603 )
Impaired BRCA2 binding to SEM1 (DSS1) (R-HSA-9763198 )
HDR through MMEJ (alt-NHEJ) (R-HSA-5685939 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast-ovarian cancer, familial, susceptibility to, 2 DIS78HM9 Definitive Autosomal dominant [1]
Familial prostate carcinoma DISL9KNO Definitive Autosomal dominant [2]
Fanconi anemia complementation group D1 DIS9247K Definitive Autosomal recessive [1]
Pancreatic cancer, susceptibility to, 2 DIS850J4 Strong Autosomal dominant [3]
Sarcoma DISZDG3U Moderate Autosomal dominant [4]
Fanconi's anemia DISGW6Q8 Supportive Autosomal recessive [5]
Hereditary breast ovarian cancer syndrome DISWDUGU Supportive Autosomal dominant [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Breast cancer type 2 susceptibility protein (BRCA2) decreases the response to substance of Temozolomide. [43]
Olaparib DM8QB1D Approved Breast cancer type 2 susceptibility protein (BRCA2) affects the response to substance of Olaparib. [44]
DM9CEI5 Breast cancer type 2 susceptibility protein (BRCA2) decreases the response to substance of . [43]
------------------------------------------------------------------------------------
41 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [7]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [8]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [9]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [10]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [11]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [12]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [13]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [14]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [15]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [16]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [17]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [16]
Marinol DM70IK5 Approved Marinol increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [18]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [19]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [20]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [21]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [22]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [23]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [24]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [25]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [26]
Lucanthone DMZLBUO Approved Lucanthone decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [27]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [28]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [9]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [29]
Camptothecin DM6CHNJ Phase 3 Camptothecin decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [11]
I3C DMIGFOR Phase 3 I3C increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [30]
Abexinostat DM91LGU Phase 3 Abexinostat decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [31]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [30]
PEITC DMOMN31 Phase 2 PEITC decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [33]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [34]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [36]
SCH 727965 DMCJLD1 Discontinued in Phase 3 SCH 727965 decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [38]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [30]
PJ34 DMXO6YH Preclinical PJ34 decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [39]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [40]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [13]
geraniol DMS3CBD Investigative geraniol decreases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [41]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Breast cancer type 2 susceptibility protein (BRCA2). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Breast cancer type 2 susceptibility protein (BRCA2). [35]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Breast cancer type 2 susceptibility protein (BRCA2). [37]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996 Mar;12(3):333-7. doi: 10.1038/ng0396-333.
3 Current Approaches to Pancreatic Cancer Screening. Am J Pathol. 2019 Jan;189(1):22-35. doi: 10.1016/j.ajpath.2018.09.013.
4 Germline mutations of TP53 and BRCA2 genes in breast cancer/sarcoma families. Eur J Cancer. 2007 Feb;43(3):601-6. doi: 10.1016/j.ejca.2006.09.024. Epub 2007 Jan 16.
5 Fanconi Anemia. 2002 Feb 14 [updated 2021 Jun 3]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
6 Hereditary ovarian cancer. Hum Pathol. 2005 Aug;36(8):861-70. doi: 10.1016/j.humpath.2005.06.006.
7 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
10 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
11 Coordinate alterations in the expression of BRCA1, BRCA2, p300, and Rad51 in response to genotoxic and other stresses in human prostate cancer cells. Prostate. 1999 Jun 15;40(1):37-49. doi: 10.1002/(sici)1097-0045(19990615)40:1<37::aid-pros5>3.0.co;2-p.
12 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
13 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
14 Quercetin and Its Fermented Extract as a Potential Inhibitor of Bisphenol A-Exposed HT-29 Colon Cancer Cells' Viability. Int J Mol Sci. 2023 Mar 15;24(6):5604. doi: 10.3390/ijms24065604.
15 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
16 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
17 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
18 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
19 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
20 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers (Basel). 2020 Sep 27;12(10):2774. doi: 10.3390/cancers12102774.
23 Bortezomib-induced "BRCAness" sensitizes multiple myeloma cells to PARP inhibitors. Blood. 2011 Dec 8;118(24):6368-79. doi: 10.1182/blood-2011-06-363911. Epub 2011 Sep 13.
24 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
25 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
26 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
27 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
28 Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells. Anticancer Res. 2015 Feb;35(2):767-74.
29 4-HPR modulates gene expression in ovarian cells. Int J Cancer. 2006 Sep 1;119(5):1005-13. doi: 10.1002/ijc.21797.
30 BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer. 2006 Feb 13;94(3):407-26. doi: 10.1038/sj.bjc.6602935.
31 HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19482-7. doi: 10.1073/pnas.0707828104. Epub 2007 Nov 27.
32 Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017 Jan;32(1):176-187.
33 Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes. Biochem Pharmacol. 2017 Aug 1;137:113-124.
34 The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene. 2016 Feb 18;35(7):833-45.
35 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
36 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
37 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
38 CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep. 2016 Nov 22;17(9):2367-2381. doi: 10.1016/j.celrep.2016.10.077.
39 PJ34, a poly(ADP-ribose) polymerase (PARP) inhibitor, reverses melphalan-resistance and inhibits repair of DNA double-strand breaks by targeting the FA/BRCA pathway in multidrug resistant multiple myeloma cell line RPMI8226/R. Int J Oncol. 2015 Jan;46(1):223-32. doi: 10.3892/ijo.2014.2726. Epub 2014 Oct 23.
40 MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett. 2013 Jul 31;221(1):23-30. doi: 10.1016/j.toxlet.2013.05.643. Epub 2013 Jun 13.
41 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.
42 Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics. 2006 Sep 29;7:246. doi: 10.1186/1471-2164-7-246.
43 Potentiation of temozolomide cytotoxicity by inhibition of DNA polymerase beta is accentuated by BRCA2 mutation. Cancer Res. 2010 Jan 1;70(1):409-17. doi: 10.1158/0008-5472.CAN-09-1353. Epub 2009 Dec 22.
44 Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011 Jul;121(7):2750-67. doi: 10.1172/JCI45014.