General Information of Drug Off-Target (DOT) (ID: OTF9I3CX)

DOT Name Tetraspanin-12 (TSPAN12)
Synonyms Tspan-12; Tetraspan NET-2; Transmembrane 4 superfamily member 12
Gene Name TSPAN12
Related Disease
TSPAN12-related vitreoretinopathy ( )
Advanced cancer ( )
Autism spectrum disorder ( )
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Cystic fibrosis ( )
Epithelial ovarian cancer ( )
Exudative vitreoretinopathy 5 ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Osteoporosis-pseudoglioma syndrome ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Persistent hyperplastic primary vitreous ( )
Pervasive developmental disorder ( )
Retinopathy ( )
Exudative vitreoretinopathy 1 ( )
Meningioma ( )
Small-cell lung cancer ( )
Exudative vitreoretinopathy ( )
UniProt ID
TSN12_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00335
Sequence
MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYF
PVVHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELM
VPVQWSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDS
CCVREFPGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMIL
TITLLWALYYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHF
EMEEL
Function
Regulator of cell surface receptor signal transduction. Plays a central role in retinal vascularization by regulating norrin (NDP) signal transduction. Acts in concert with norrin (NDP) to promote FZD4 multimerization and subsequent activation of FZD4, leading to promote accumulation of beta-catenin (CTNNB1) and stimulate LEF/TCF-mediated transcriptional programs. Suprisingly, it only activates the norrin (NDP)-dependent activation of FZD4, while it does not activate the Wnt-dependent activation of FZD4, suggesting the existence of a Wnt-independent signaling that also promote accumulation the beta-catenin (CTNNB1). Acts as a regulator of membrane proteinases such as ADAM10 and MMP14/MT1-MMP. Activates ADAM10-dependent cleavage activity of amyloid precursor protein (APP). Activates MMP14/MT1-MMP-dependent cleavage activity.

Molecular Interaction Atlas (MIA) of This DOT

21 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
TSPAN12-related vitreoretinopathy DISIS7NH Definitive Semidominant [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Autism spectrum disorder DISXK8NV Strong Biomarker [3]
Breast cancer DIS7DPX1 Strong Altered Expression [4]
Breast carcinoma DIS2UE88 Strong Altered Expression [4]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Cystic fibrosis DIS2OK1Q Strong Genetic Variation [5]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [2]
Exudative vitreoretinopathy 5 DISCHKOU Strong Autosomal dominant [6]
Neoplasm DISZKGEW Strong Genetic Variation [7]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [8]
Osteoporosis-pseudoglioma syndrome DISIXWT1 Strong Genetic Variation [9]
Ovarian cancer DISZJHAP Strong Biomarker [2]
Ovarian neoplasm DISEAFTY Strong Biomarker [2]
Persistent hyperplastic primary vitreous DISABPH6 Strong Biomarker [3]
Pervasive developmental disorder DIS51975 Strong Biomarker [3]
Retinopathy DISB4B0F Strong Biomarker [10]
Exudative vitreoretinopathy 1 DISRC9YA moderate Genetic Variation [11]
Meningioma DISPT4TG moderate Biomarker [12]
Small-cell lung cancer DISK3LZD moderate Biomarker [13]
Exudative vitreoretinopathy DISWN0TG Supportive Autosomal dominant [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tetraspanin-12 (TSPAN12). [15]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tetraspanin-12 (TSPAN12). [16]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tetraspanin-12 (TSPAN12). [17]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tetraspanin-12 (TSPAN12). [18]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tetraspanin-12 (TSPAN12). [19]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Tetraspanin-12 (TSPAN12). [21]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Tetraspanin-12 (TSPAN12). [18]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Tetraspanin-12 (TSPAN12). [18]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Tetraspanin-12 (TSPAN12). [18]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Tetraspanin-12 (TSPAN12). [22]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Tetraspanin-12 (TSPAN12). [23]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Tetraspanin-12 (TSPAN12). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Tetraspanin-12 (TSPAN12). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tetraspanin-12 (TSPAN12). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Tetraspanin-12 (TSPAN12). [24]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 TSPAN12 Precedes Tumor Proliferation by Cell Cycle Control in Ovarian Cancer.Mol Cells. 2019 Jul 31;42(7):557-567. doi: 10.14348/molcells.2019.0015.
3 Submicroscopic deletion in 7q31 encompassing CADPS2 and TSPAN12 in a child with autism spectrum disorder and PHPV.Am J Med Genet A. 2011 Jul;155A(7):1568-73. doi: 10.1002/ajmg.a.34028. Epub 2011 May 27.
4 Upregulation of TSPAN12 is associated with the colorectal cancer growth and metastasis.Am J Transl Res. 2017 Feb 15;9(2):812-822. eCollection 2017.
5 Familial exudative vitreoretinopathy caused by a homozygous mutation in TSPAN12 in a cystic fibrosis infant.Ophthalmic Genet. 2014 Sep;35(3):184-6. doi: 10.3109/13816810.2013.811270. Epub 2013 Jul 8.
6 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
7 Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging.Ann Transl Med. 2019 Jun;7(11):232. doi: 10.21037/atm.2018.08.05.
8 TSPAN12 is overexpressed in NSCLC via p53 inhibition and promotes NSCLC cell growth in vitro and in vivo.Onco Targets Ther. 2018 Mar 1;11:1095-1103. doi: 10.2147/OTT.S155620. eCollection 2018.
9 Simultaneous Novel Mutations of LRP5 and TSPAN12 in a Case of Familial Exudative Vitreoretinopathy.J Pediatr Ophthalmol Strabismus. 2016 Feb 4;53 Online:e1-5. doi: 10.3928/01913913-20151215-01.
10 Correction: Antibody targeting TSPAN12/-catenin signaling in vasoproliferative retinopathy.Oncotarget. 2018 Sep 4;9(69):33244. doi: 10.18632/oncotarget.26102. eCollection 2018 Sep 4.
11 Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet. 2010 Feb 12;86(2):248-53. doi: 10.1016/j.ajhg.2010.01.012.
12 A comparison of the prevalence and risk factors of complications in intracranial tumor embolization between the Japanese Registry of NeuroEndovascular Therapy 2 (JR-NET2) and JR-NET3.Acta Neurochir (Wien). 2019 Aug;161(8):1675-1682. doi: 10.1007/s00701-019-03970-w. Epub 2019 Jun 7.
13 TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495.Biochem Biophys Res Commun. 2017 Apr 29;486(2):349-356. doi: 10.1016/j.bbrc.2017.03.044. Epub 2017 Mar 14.
14 Familial Exudative Vitreoretinopathy, Autosomal Dominant C RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY. 2005 Mar 21 [updated 2011 Sep 22]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
15 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
16 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
17 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
18 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
19 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
20 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
21 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
24 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
25 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.