General Information of Drug Off-Target (DOT) (ID: OTFIIC43)

DOT Name Antiviral innate immune response receptor RIG-I (RIGI)
Synonyms
ATP-dependent RNA helicase DDX58; EC 3.6.4.13; DEAD box protein 58; RIG-I-like receptor 1; RLR-1; RNA sensor RIG-I; Retinoic acid-inducible gene 1 protein; RIG-1; Retinoic acid-inducible gene I protein; RIG-I
Gene Name RIGI
Related Disease
Singleton-Merten syndrome 2 ( )
Singleton-Merten dysplasia ( )
Singleton-Merten syndrome 1 ( )
UniProt ID
RIGI_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LWD ; 2LWE ; 2QFB ; 2QFD ; 2RMJ ; 2YKG ; 3LRN ; 3LRR ; 3NCU ; 3OG8 ; 3ZD6 ; 3ZD7 ; 4AY2 ; 4BPB ; 4NQK ; 4ON9 ; 4P4H ; 5E3H ; 5F98 ; 5F9F ; 5F9H ; 6GPG ; 6KYV ; 7BAH ; 7BAI ; 7JL1 ; 7JL3 ; 7MK1 ; 7TNX ; 7TNY ; 7TNZ ; 7TO0 ; 7TO1 ; 7TO2 ; 8DVR ; 8DVS ; 8DVU ; 8G7T ; 8G7U ; 8G7V
EC Number
3.6.4.13
Pfam ID
PF16739 ; PF00270 ; PF00271 ; PF18119 ; PF11648
Sequence
MTTEQRRSLQAFQDYIRKTLDPTYILSYMAPWFREEEVQYIQAEKNNKGPMEAATLFLKF
LLELQEEGWFRGFLDALDHAGYSGLYEAIESWDFKKIEKLEEYRLLLKRLQPEFKTRIIP
TDIISDLSECLINQECEEILQICSTKGMMAGAEKLVECLLRSDKENWPKTLKLALEKERN
KFSELWIVEKGIKDVETEDLEDKMETSDIQIFYQEDPECQNLSENSCPPSEVSDTNLYSP
FKPRNYQLELALPAMKGKNTIICAPTGCGKTFVSLLICEHHLKKFPQGQKGKVVFFANQI
PVYEQQKSVFSKYFERHGYRVTGISGATAENVPVEQIVENNDIIILTPQILVNNLKKGTI
PSLSIFTLMIFDECHNTSKQHPYNMIMFNYLDQKLGGSSGPLPQVIGLTASVGVGDAKNT
DEALDYICKLCASLDASVIATVKHNLEELEQVVYKPQKFFRKVESRISDKFKYIIAQLMR
DTESLAKRICKDLENLSQIQNREFGTQKYEQWIVTVQKACMVFQMPDKDEESRICKALFL
YTSHLRKYNDALIISEHARMKDALDYLKDFFSNVRAAGFDEIEQDLTQRFEEKLQELESV
SRDPSNENPKLEDLCFILQEEYHLNPETITILFVKTRALVDALKNWIEGNPKLSFLKPGI
LTGRGKTNQNTGMTLPAQKCILDAFKASGDHNILIATSVADEGIDIAQCNLVILYEYVGN
VIKMIQTRGRGRARGSKCFLLTSNAGVIEKEQINMYKEKMMNDSILRLQTWDEAVFREKI
LHIQTHEKFIRDSQEKPKPVPDKENKKLLCRKCKALACYTADVRVIEECHYTVLGDAFKE
CFVSRPHPKPKQFSSFEKRAKIFCARQNCSHDWGIHVKYKTFEIPVIKIESFVVEDIATG
VQTLYSKWKDFHFEKIPFDPAEMSK
Function
Innate immune receptor that senses cytoplasmic viral nucleic acids and activates a downstream signaling cascade leading to the production of type I interferons and pro-inflammatory cytokines. Forms a ribonucleoprotein complex with viral RNAs on which it homooligomerizes to form filaments. The homooligomerization allows the recruitment of RNF135 an E3 ubiquitin-protein ligase that activates and amplifies the RIG-I-mediated antiviral signaling in an RNA length-dependent manner through ubiquitination-dependent and -independent mechanisms. Upon activation, associates with mitochondria antiviral signaling protein (MAVS/IPS1) that activates the IKK-related kinases TBK1 and IKBKE which in turn phosphorylate the interferon regulatory factors IRF3 and IRF7, activating transcription of antiviral immunological genes including the IFN-alpha and IFN-beta interferons. Ligands include 5'-triphosphorylated ssRNAs and dsRNAs but also short dsRNAs (<1 kb in length). In addition to the 5'-triphosphate moiety, blunt-end base pairing at the 5'-end of the RNA is very essential. Overhangs at the non-triphosphorylated end of the dsRNA RNA have no major impact on its activity. A 3'overhang at the 5'triphosphate end decreases and any 5'overhang at the 5' triphosphate end abolishes its activity. Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory syncytial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV). It also detects rotaviruses and reoviruses. Detects and binds to SARS-CoV-2 RNAs which is inhibited by m6A RNA modifications (Ref.69). Also involved in antiviral signaling in response to viruses containing a dsDNA genome such as Epstein-Barr virus (EBV). Detects dsRNA produced from non-self dsDNA by RNA polymerase III, such as Epstein-Barr virus-encoded RNAs (EBERs). May play important roles in granulocyte production and differentiation, bacterial phagocytosis and in the regulation of cell migration.
Tissue Specificity Present in vascular smooth cells (at protein level).
KEGG Pathway
NF-kappa B sig.ling pathway (hsa04064 )
RIG-I-like receptor sig.ling pathway (hsa04622 )
Cytosolic D.-sensing pathway (hsa04623 )
Hepatitis C (hsa05160 )
Hepatitis B (hsa05161 )
Measles (hsa05162 )
Influenza A (hsa05164 )
Herpes simplex virus 1 infection (hsa05168 )
Epstein-Barr virus infection (hsa05169 )
Coro.virus disease - COVID-19 (hsa05171 )
Reactome Pathway
DDX58/IFIH1-mediated induction of interferon-alpha/beta (R-HSA-168928 )
Ub-specific processing proteases (R-HSA-5689880 )
Ovarian tumor domain proteases (R-HSA-5689896 )
OAS antiviral response (R-HSA-8983711 )
TRAF3-dependent IRF activation pathway (R-HSA-918233 )
TRAF6 mediated IRF7 activation (R-HSA-933541 )
TRAF6 mediated NF-kB activation (R-HSA-933542 )
NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 (R-HSA-933543 )
Negative regulators of DDX58/IFIH1 signaling (R-HSA-936440 )
SARS-CoV-1 activates/modulates innate immune responses (R-HSA-9692916 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Singleton-Merten syndrome 2 DISBYX0D Strong Autosomal dominant [1]
Singleton-Merten dysplasia DISYNAVB Supportive Autosomal dominant [1]
Singleton-Merten syndrome 1 DISXY2LC Limited Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Antiviral innate immune response receptor RIG-I (RIGI). [2]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [10]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [11]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Prednisolone DMQ8FR2 Approved Prednisolone decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Methylprednisolone DM4BDON Approved Methylprednisolone decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Antiviral innate immune response receptor RIG-I (RIGI). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015 Feb 5;96(2):266-74. doi: 10.1016/j.ajhg.2014.11.019. Epub 2015 Jan 22.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Cyclosporine A--induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling. Toxicol Sci. 2012 Mar;126(1):101-13.
4 Benzodithiophenes potentiate differentiation of acute promyelocytic leukemia cells by lowering the threshold for ligand-mediated corepressor/coactivator exchange with retinoic acid receptor alpha and enhancing changes in all-trans-retinoic acid-regulated gene expression. Cancer Res. 2005 Sep 1;65(17):7856-65. doi: 10.1158/0008-5472.CAN-05-1056.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
13 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.