General Information of Drug Off-Target (DOT) (ID: OTLUNCIH)

DOT Name Serine/threonine-protein kinase PAK 2 (PAK2)
Synonyms EC 2.7.11.1; Gamma-PAK; PAK65; S6/H4 kinase; p21-activated kinase 2; PAK-2; p58
Gene Name PAK2
Related Disease
Knobloch syndrome 2 ( )
UniProt ID
PAK2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3PCS
EC Number
2.7.11.1
Pfam ID
PF00786 ; PF00069
Sequence
MSDNGELEDKPPAPPVRMSSTIFSTGGKDPLSANHSLKPLPSVPEEKKPRHKIISIFSGT
EKGSKKKEKERPEISPPSDFEHTIHVGFDAVTGEFTGMPEQWARLLQTSNITKLEQKKNP
QAVLDVLKFYDSNTVKQKYLSFTPPEKDGFPSGTPALNAKGTEAPAVVTEEEDDDEETAP
PVIAPRPDHTKSIYTRSVIDPVPAPVGDSHVDGAAKSLDKQKKKTKMTDEEIMEKLRTIV
SIGDPKKKYTRYEKIGQGASGTVFTATDVALGQEVAIKQINLQKQPKKELIINEILVMKE
LKNPNIVNFLDSYLVGDELFVVMEYLAGGSLTDVVTETCMDEAQIAAVCRECLQALEFLH
ANQVIHRDIKSDNVLLGMEGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAY
GPKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIATNGTPELQNPEKLSPIFRDFLNRC
LEMDVEKRGSAKELLQHPFLKLAKPLSSLTPLIMAAKEAMKSNR
Function
Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Full-length PAK2 stimulates cell survival and cell growth. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Phosphorylates JUN and plays an important role in EGF-induced cell proliferation. Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP. Phosphorylates CASP7, thereby preventing its activity. Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis. On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway. Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation.
Tissue Specificity Ubiquitously expressed. Higher levels seen in skeletal muscle, ovary, thymus and spleen.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
ErbB sig.ling pathway (hsa04012 )
Ras sig.ling pathway (hsa04014 )
Axon guidance (hsa04360 )
Focal adhesion (hsa04510 )
T cell receptor sig.ling pathway (hsa04660 )
Regulation of actin cytoskeleton (hsa04810 )
Pathogenic Escherichia coli infection (hsa05130 )
Human immunodeficiency virus 1 infection (hsa05170 )
Re.l cell carcinoma (hsa05211 )
Reactome Pathway
Generation of second messenger molecules (R-HSA-202433 )
Regulation of PAK-2p34 activity by PS-GAP/RHG10 (R-HSA-211728 )
Regulation of activated PAK-2p34 by proteasome mediated degradation (R-HSA-211733 )
Stimulation of the cell death response by PAK-2p34 (R-HSA-211736 )
FCERI mediated MAPK activation (R-HSA-2871796 )
CD28 dependent Vav1 pathway (R-HSA-389359 )
Ephrin signaling (R-HSA-3928664 )
Sema3A PAK dependent Axon repulsion (R-HSA-399954 )
Activation of RAC1 (R-HSA-428540 )
VEGFA-VEGFR2 Pathway (R-HSA-4420097 )
Smooth Muscle Contraction (R-HSA-445355 )
VEGFR2 mediated vascular permeability (R-HSA-5218920 )
CD209 (DC-SIGN) signaling (R-HSA-5621575 )
RHO GTPases activate PAKs (R-HSA-5627123 )
MAPK6/MAPK4 signaling (R-HSA-5687128 )
Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation (R-HSA-8950505 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOH GTPase cycle (R-HSA-9013407 )
RHOG GTPase cycle (R-HSA-9013408 )
RHOJ GTPase cycle (R-HSA-9013409 )
RHOU GTPase cycle (R-HSA-9013420 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOV GTPase cycle (R-HSA-9013424 )
Nef and signal transduction (R-HSA-164944 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Knobloch syndrome 2 DISK88G8 Limited Unknown [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Serine/threonine-protein kinase PAK 2 (PAK2). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Serine/threonine-protein kinase PAK 2 (PAK2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Serine/threonine-protein kinase PAK 2 (PAK2). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Serine/threonine-protein kinase PAK 2 (PAK2). [18]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Serine/threonine-protein kinase PAK 2 (PAK2). [19]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Serine/threonine-protein kinase PAK 2 (PAK2). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [10]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [11]
Marinol DM70IK5 Approved Marinol increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [12]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [10]
Menthol DMG2KW7 Approved Menthol increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [13]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [4]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [15]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the activity of Serine/threonine-protein kinase PAK 2 (PAK2). [17]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone decreases the expression of Serine/threonine-protein kinase PAK 2 (PAK2). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Curcumin DMQPH29 Phase 3 Curcumin decreases the cleavage of Serine/threonine-protein kinase PAK 2 (PAK2). [14]
------------------------------------------------------------------------------------

References

1 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet. 2005 Jul;77(1):154-60. doi: 10.1086/431653. Epub 2005 May 25.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
11 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
12 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
13 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
14 Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem. 2004 May 1;92(1):200-12. doi: 10.1002/jcb.20059.
15 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Caffeine induces cell death via activation of apoptotic signal and inactivation of survival signal in human osteoblasts. Int J Mol Sci. 2008 May;9(5):698-718. doi: 10.3390/ijms9050698. Epub 2008 May 8.
18 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
21 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.