General Information of Drug Off-Target (DOT) (ID: OTNTM2SP)

DOT Name Carbohydrate sulfotransferase 15 (CHST15)
Synonyms EC 2.8.2.33; B-cell RAG-associated gene protein; hBRAG; N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase; GalNAc4S-6ST
Gene Name CHST15
UniProt ID
CHSTF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.8.2.33
Pfam ID
PF00685
Sequence
MRHCINCCIQLLPDGAHKQQVNCQGGPHHGHQACPTCKGENKILFRVDSKQMNLLAVLEV
RTEGNENWGGFLRFKKGKRCSLVFGLIIMTLVMASYILSGAHQELLISSPFHYGGFPSNP
SLMDSENPSDTKEHHHQSSVNNISYMKDYPSIKLIINSITTRIEFTTRQLPDLEDLKKQE
LHMFSVIPNKFLPNSKSPCWYEEFSGQNTTDPYLTNSYVLYSKRFRSTFDALRKAFWGHL
AHAHGKHFRLRCLPHFYIIGQPKCGTTDLYDRLRLHPEVKFSAIKEPHWWTRKRFGIVRL
RDGLRDRYPVEDYLDLFDLAAHQIHQGLQASSAKEQSKMNTIIIGEASASTMWDNNAWTF
FYDNSTDGEPPFLTQDFIHAFQPNARLIVMLRDPVERLYSDYLYFASSNKSADDFHEKVT
EALQLFENCMLDYSLRACVYNNTLNNAMPVRLQVGLYAVYLLDWLSVFDKQQFLILRLED
HASNVKYTMHKVFQFLNLGPLSEKQEALMTKSPASNARRPEDRNLGPMWPITQKILRDFY
RPFNARLAQVLADEAFAWKTT
Function
Sulfotransferase that transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 hydroxyl group of the GalNAc 4-sulfate residue of chondroitin sulfate A and forms chondroitin sulfate E containing GlcA-GalNAc(4,6-SO(4)) repeating units. It also transfers sulfate to a unique non-reducing terminal sequence, GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4), to yield a highly sulfated structure similar to the structure found in thrombomodulin chondroitin sulfate. May also act as a B-cell receptor involved in BCR ligation-mediated early activation that mediate regulatory signals key to B-cell development and/or regulation of B-cell-specific RAG expression; however such results are unclear in vivo.
Tissue Specificity
Expressed in B-cell-enriched tissues but not in fetal or adult thymus. Expressed in fetal and adult spleen, lymph node, tonsil, bone marrow and peripheral leukocytes. Not expressed in T-cells. In pro-B, pre-B, and mature B-cell lines, it colocalizes with RAG1.
KEGG Pathway
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate (hsa00532 )
Reactome Pathway
Chondroitin sulfate biosynthesis (R-HSA-2022870 )
BioCyc Pathway
MetaCyc:HS11694-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Carbohydrate sulfotransferase 15 (CHST15). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [8]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Carbohydrate sulfotransferase 15 (CHST15). [10]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Carbohydrate sulfotransferase 15 (CHST15). [7]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [12]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [12]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [14]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [15]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Carbohydrate sulfotransferase 15 (CHST15). [19]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [20]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Carbohydrate sulfotransferase 15 (CHST15). [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Carbohydrate sulfotransferase 15 (CHST15). [17]
------------------------------------------------------------------------------------

References

1 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
17 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
20 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.