General Information of Drug Off-Target (DOT) (ID: OTNWHUJ1)

DOT Name 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1)
Synonyms
TMABA-DH; TMABALDH; EC 1.2.1.47; Aldehyde dehydrogenase E3 isozyme; Aldehyde dehydrogenase family 9 member A1; EC 1.2.1.3; Formaldehyde dehydrogenase; EC 1.2.1.46; Gamma-aminobutyraldehyde dehydrogenase; EC 1.2.1.19; R-aminobutyraldehyde dehydrogenase
Gene Name ALDH9A1
Related Disease
Advanced cancer ( )
Cardiovascular disease ( )
Hemolytic anemia ( )
Kidney cancer ( )
Renal carcinoma ( )
UniProt ID
AL9A1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6QAK; 6QAO; 6QAP; 6VR6; 6VWF
EC Number
1.2.1.19; 1.2.1.3; 1.2.1.46; 1.2.1.47
Pfam ID
PF00171
Sequence
MSTGTFVVSQPLNYRGGARVEPADASGTEKAFEPATGRVIATFTCSGEKEVNLAVQNAKA
AFKIWSQKSGMERCRILLEAARIIREREDEIATMECINNGKSIFEARLDIDISWQCLEYY
AGLAASMAGEHIQLPGGSFGYTRREPLGVCVGIGAWNYPFQIASWKSAPALACGNAMVFK
PSPFTPVSALLLAEIYSEAGVPPGLFNVVQGGAATGQFLCQHPDVAKVSFTGSVPTGMKI
MEMSAKGIKPVTLELGGKSPLIIFSDCDMNNAVKGALMANFLTQGQVCCNGTRVFVQKEI
LDKFTEEVVKQTQRIKIGDPLLEDTRMGPLINRPHLERVLGFVKVAKEQGAKVLCGGDIY
VPEDPKLKDGYYMRPCVLTNCRDDMTCVKEEIFGPVMSILSFDTEAEVLERANDTTFGLA
AGVFTRDIQRAHRVVAELQAGTCFINNYNVSPVELPFGGYKKSGFGRENGRVTIEYYSQL
KTVCVEMGDVESAF
Function
Converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine with high efficiency (in vitro). Can catalyze the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction, but with low efficiency. Catalyzes the oxidation of aldehydes arising from biogenic amines and polyamines.
Tissue Specificity
Detected in brain (at protein level) . High expression in adult liver, skeletal muscle, and kidney. Low levels in heart, pancreas, lung and brain . Expressed in all regions of the brain. Expression levels are variable in the different brain areas, with the highest levels in the spinal cord and the lowest in the occipital pole.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Ascorbate and aldarate metabolism (hsa00053 )
Fatty acid degradation (hsa00071 )
Valine, leucine and isoleucine degradation (hsa00280 )
Lysine degradation (hsa00310 )
Arginine and proline metabolism (hsa00330 )
Histidine metabolism (hsa00340 )
Tryptophan metabolism (hsa00380 )
beta-Alanine metabolism (hsa00410 )
Glycerolipid metabolism (hsa00561 )
Pyruvate metabolism (hsa00620 )
Metabolic pathways (hsa01100 )
Alcoholic liver disease (hsa04936 )
Reactome Pathway
Carnitine synthesis (R-HSA-71262 )
BioCyc Pathway
MetaCyc:HS06992-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Genetic Variation [1]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [1]
Hemolytic anemia DIS803XQ Strong Genetic Variation [1]
Kidney cancer DISBIPKM Strong Genetic Variation [2]
Renal carcinoma DISER9XT Strong Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Acetaldehyde DMJFKG4 Investigative 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1) increases the oxidation of Acetaldehyde. [19]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [8]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [10]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [11]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [12]
Paclitaxel DMLB81S Approved Paclitaxel increases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [13]
Arecoline DMFJZK3 Phase 1 Arecoline decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [16]
Milchsaure DM462BT Investigative Milchsaure increases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [17]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms.Am J Clin Nutr. 2002 Apr;75(4):616-58. doi: 10.1093/ajcn/75.4.616.
2 Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer.PLoS One. 2015 Mar 31;10(3):e0122589. doi: 10.1371/journal.pone.0122589. eCollection 2015.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Xenobiotic CAR activators induce Dlk1-Dio3 locus noncoding RNA expression in mouse liver. Toxicol Sci. 2017 Aug 1;158(2):367-378.
12 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
13 Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol. 2005 Jul;98(1):45-53. doi: 10.1016/j.ygyno.2005.04.010.
14 Characterization of arecoline-induced effects on cytotoxicity in normal human gingival fibroblasts by global gene expression profiling. Toxicol Sci. 2007 Nov;100(1):66-74.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
18 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
19 Human aldehyde dehydrogenase-catalyzed oxidation of ethylene glycol ether aldehydes. Chem Biol Interact. 2009 Mar 16;178(1-3):56-63. doi: 10.1016/j.cbi.2008.09.025. Epub 2008 Oct 1.