General Information of Drug Off-Target (DOT) (ID: OTOBD7YO)

DOT Name T-cell activation inhibitor, mitochondrial (TCAIM)
Synonyms Tolerance associated gene-1 protein; TOAG-1
Gene Name TCAIM
Related Disease
Psoriasis ( )
UniProt ID
TCAIM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF14687 ; PF14688
Sequence
MFCHLRPMRRLCLEKIFPHWFPFSRALSGAEAVNALRPFYFAVHPDFFGQHPVEREINEN
SLKRLSVYLENLQKPGFKSLKPTQLTFYVRETDQSSSDGQEPFSTSGFRAVKFTLHTRDL
LSTVLYILNSCSLSVEHIQSLNTNMHTQPLKEAKRMPDRPIKWDKSYYSFTGFKDPDEDL
EQVSRVETTLTSWLDNNGKSAVKKLKNSLPLRKELDRLKDELSHQLQLSDIRWQRSWGIA
HRCSQLHSLSRLAQQNLETLKKAKGCTIIFTDRSGMSAVGHVMLGTMDVHHHWTKLFERL
PSYFDLQRRLMILEDQISYLLGGIQVVYIEELQPVLTLEEYYSLLDVFYNRLLKSRILFH
PRSLRGLQMILNSDRYAPSLHELGHFNIPTLCDPANLQWFILTKAQQARENMKRKEELKV
IENELIQASTKKFSLEKLYKEPSISSIQMVDCCKRLLEQSLPYLHGMHLCISHFYSVMQD
GDLCIPWNWKNGEAIK
Function May regulate T-cell apoptosis.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Psoriasis DIS59VMN Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of T-cell activation inhibitor, mitochondrial (TCAIM). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of T-cell activation inhibitor, mitochondrial (TCAIM). [14]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [8]
Estradiol DMUNTE3 Approved Estradiol increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [11]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [12]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [18]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of T-cell activation inhibitor, mitochondrial (TCAIM). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Expression of tolerance associated gene-1, a mitochondrial protein inhibiting T cell activation, can be used to predict response to immune modulating therapies.J Immunol. 2009 Sep 15;183(6):4077-87. doi: 10.4049/jimmunol.0804351. Epub 2009 Aug 14.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
10 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
16 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
19 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.