General Information of Drug Off-Target (DOT) (ID: OTQEBL0W)

DOT Name Calcium-binding protein 39-like (CAB39L)
Synonyms Antigen MLAA-34; MO25beta; Mo25-like protein
Gene Name CAB39L
Related Disease
Acute monocytic leukemia ( )
Adult acute monocytic leukemia ( )
Endometriosis ( )
leukaemia ( )
Leukemia ( )
Parkinson disease ( )
Gastric cancer ( )
Neoplasm ( )
Stomach cancer ( )
UniProt ID
CB39L_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3ZHP
Pfam ID
PF08569
Sequence
MKKMPLFSKSHKNPAEIVKILKDNLAILEKQDKKTDKASEEVSKSLQAMKEILCGTNEKE
PPTEAVAQLAQELYSSGLLVTLIADLQLIDFEGKKDVTQIFNNILRRQIGTRSPTVEYIS
AHPHILFMLLKGYEAPQIALRCGIMLRECIRHEPLAKIILFSNQFRDFFKYVELSTFDIA
SDAFATFKDLLTRHKVLVADFLEQNYDTIFEDYEKLLQSENYVTKRQSLKLLGELILDRH
NFAIMTKYISKPENLKLMMNLLRDKSPNIQFEAFHVFKVFVASPHKTQPIVEILLKNQPK
LIEFLSSFQKERTDDEQFADEKNYLIKQIRDLKKTAP
Function Component of a complex that binds and activates STK11/LKB1. In the complex, required to stabilize the interaction between CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta) and STK11/LKB1.
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
AMPK sig.ling pathway (hsa04152 )
Reactome Pathway
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute monocytic leukemia DIS28NEL Strong Genetic Variation [1]
Adult acute monocytic leukemia DISG6BLX Strong Genetic Variation [1]
Endometriosis DISX1AG8 Strong Biomarker [2]
leukaemia DISS7D1V Strong Genetic Variation [1]
Leukemia DISNAKFL Strong Genetic Variation [1]
Parkinson disease DISQVHKL Strong Genetic Variation [3]
Gastric cancer DISXGOUK moderate Biomarker [4]
Neoplasm DISZKGEW moderate Biomarker [4]
Stomach cancer DISKIJSX moderate Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Calcium-binding protein 39-like (CAB39L). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Calcium-binding protein 39-like (CAB39L). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Calcium-binding protein 39-like (CAB39L). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Calcium-binding protein 39-like (CAB39L). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Calcium-binding protein 39-like (CAB39L). [9]
Testosterone DM7HUNW Approved Testosterone increases the expression of Calcium-binding protein 39-like (CAB39L). [9]
Triclosan DMZUR4N Approved Triclosan increases the expression of Calcium-binding protein 39-like (CAB39L). [10]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Calcium-binding protein 39-like (CAB39L). [11]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Calcium-binding protein 39-like (CAB39L). [12]
PEITC DMOMN31 Phase 2 PEITC increases the expression of Calcium-binding protein 39-like (CAB39L). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Calcium-binding protein 39-like (CAB39L). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Calcium-binding protein 39-like (CAB39L). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Calcium-binding protein 39-like (CAB39L). [17]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Calcium-binding protein 39-like (CAB39L). [18]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Calcium-binding protein 39-like (CAB39L). [19]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE decreases the expression of Calcium-binding protein 39-like (CAB39L). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Calcium-binding protein 39-like (CAB39L). [14]
------------------------------------------------------------------------------------

References

1 Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/-catenin signaling pathway.PLoS One. 2017 Oct 23;12(10):e0186868. doi: 10.1371/journal.pone.0186868. eCollection 2017.
2 Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci.Hum Mol Genet. 2015 Feb 15;24(4):1185-99. doi: 10.1093/hmg/ddu516. Epub 2014 Oct 8.
3 A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci.Nat Genet. 2017 Oct;49(10):1511-1516. doi: 10.1038/ng.3955. Epub 2017 Sep 11.
4 CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1 axis to inhibit gastric tumorigenesis.Oncogene. 2018 Dec;37(50):6383-6398. doi: 10.1038/s41388-018-0402-1. Epub 2018 Jul 27.
5 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
8 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
11 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017 Jan;32(1):176-187.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
19 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
20 Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines. Toxicol Appl Pharmacol. 2010 Nov 15;249(1):91-100.