General Information of Disease (ID: DIS28NEL)

Disease Name Acute monocytic leukemia
Synonyms
acute monoblastic/monocytic leukaemia; leukemia, acute monocytic; acute monoblastic leukaemia; acute myeloblastic leukaemia type 5; AML-M5; acute myeloblastic leukemia type 5; acute monoblastic/monocytic leukemia; acute monoblastic leukemia; monocytic leukaemia; monocytic leukemia; acute monocytic leukaemia (FAB M5b); monocytic leukemia, acute; acute monocytic leukemia, FAB M5; AML M5; acute monocytic leukemia, morphology; acute monocytic leukaemia (FAB M5B); acute monocytic leukemia (FAB M5B); acute monocytic leukemia (FAB M5b); acute monocytic leukemia, morphology (morphologic abnormality); acute monoblastic leukaemia and acute monocytic leukaemia; leukemia, monocytic, malignant; acute monoblastic leukemia and acute monocytic leukemia; acute monocytic leukaemia without mention of remission; acute monocytic leukemia; acute monocytic leukemia without mention of remission
Definition
Acute monoblastic leukemia (AML-M5), is one of the most common subtypes of acute myeloid leukemia (AML) that is either comprised of more than 80% of monoblasts (AML-M5a) or 30-80% monoblasts with (pro)monocytic differentiation (AML-M5b). AML-M5 presents with asthenia, pallor, fever, and dizziness. Specific features of AML-M5 include hyperleukocytosis, propensity for extramedullary infiltrates, coagulation abnormalities including disseminated intravascular coagulation and neurological disorders. Leukemia cutis and gingival infiltration can also be seen. A characteristic translocation observed in AML-M5 is t(9;11).
Disease Hierarchy
DIS8M755: Monocytic leukemia
DISCSPTN: Acute myelogenous leukaemia
DIS28NEL: Acute monocytic leukemia
Disease Identifiers
MONDO ID
MONDO_0007896
MESH ID
D007948
UMLS CUI
C0023465
OMIM ID
151380
MedGen ID
7319
HPO ID
HP:0004845
Orphanet ID
514
SNOMED CT ID
22331004

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Daunorubicin DMQUSBT Approved Small molecular drug [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 74 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCC1 TTOI92F Limited Altered Expression [2]
ABCC3 TTVLG21 Limited Biomarker [3]
CALR TTUZ7OA Limited Genetic Variation [4]
CD19 TTW640A Limited Altered Expression [5]
CD34 TTZAVYN Limited Biomarker [6]
CD38 TTPURFN Limited Biomarker [7]
CDK9 TT1LVF2 Limited Biomarker [8]
CSF3R TTC70AJ Limited Genetic Variation [9]
DCK TTJOCE4 Limited Biomarker [10]
EBP TT4VQZX Limited Biomarker [11]
IDH1 TTV2A1R Limited Genetic Variation [12]
IL3RA TTENHJ0 Limited Altered Expression [13]
MCL1 TTL53M6 Limited Biomarker [14]
MDM4 TT9OUDQ Limited Biomarker [15]
MLANA TT362RB Limited Biomarker [16]
MPO TTVCZPI Limited Altered Expression [17]
NCAM1 TTVXPHT Limited Biomarker [18]
NPM1 TTHBS98 Limited Biomarker [19]
NSD1 TTTSJ3H Limited Biomarker [20]
PML TTLH9NY Limited Genetic Variation [21]
PTP4A3 TT7YM8D Limited Biomarker [22]
RARA TTW38KT Limited Biomarker [23]
SEPTIN6 TTAGE7U Limited Biomarker [24]
RAD51 TTC0G1L moderate Biomarker [25]
BCAT1 TTES57P Strong Altered Expression [26]
BRIP1 TTZV7LJ Strong Biomarker [25]
CBL TT7QT13 Strong Genetic Variation [27]
CCR7 TT2GIDQ Strong Altered Expression [28]
CD200 TT0BE68 Strong Altered Expression [29]
CD33 TTJVYO3 Strong Biomarker [30]
CD6 TTMF6KC Strong Genetic Variation [31]
CD96 TT83C4X Strong Biomarker [32]
CDA TTQ12RK Strong Biomarker [33]
CDK8 TTBJR4L Strong Altered Expression [34]
CEBPA TT5LWG1 Strong Genetic Variation [35]
CLEC12A TT70N8V Strong Biomarker [36]
CSNK1A1 TTFQEMX Strong Biomarker [37]
CXCR4 TTBID49 Strong Biomarker [38]
DEK TT1NMGV Strong Genetic Variation [39]
EIF2AK2 TTXEZJ4 Strong Biomarker [40]
ELANE TTPLTSQ Strong Altered Expression [17]
FABP4 TTHWMFZ Strong Biomarker [41]
FANCA TTV5HJS Strong Biomarker [25]
FANCF TTNZKFJ Strong Biomarker [25]
FCGR1A TTZK4I3 Strong Biomarker [42]
FCGRT TTKLPHO Strong Biomarker [43]
FDXR TT3W4IX Strong Biomarker [2]
GLIPR1 TTEQF1O Strong Altered Expression [44]
IL1RAP TTWS50K Strong Biomarker [45]
INPP5D TTTP2Z1 Strong Genetic Variation [46]
KAT6A TT6O1J0 Strong Biomarker [47]
KDM1A TTNR0UQ Strong Biomarker [48]
KDM5A TTIG67W Strong Biomarker [49]
LAMP2 TTULDG7 Strong Altered Expression [50]
LCK TT860QF Strong Biomarker [51]
LILRB2 TTHC6XU Strong Altered Expression [52]
LILRB4 TTREOKA Strong Biomarker [53]
LMO2 TTFX379 Strong Altered Expression [54]
NCR1 TTQNRJM Strong Biomarker [55]
NR4A3 TTJQB49 Strong Biomarker [56]
PTP4A2 TT1MHKD Strong Altered Expression [57]
RPS6KA1 TTIXKA4 Strong Biomarker [58]
RRM1 TTWP0NS Strong Genetic Variation [59]
RUNX1 TTWIN3H Strong Genetic Variation [60]
SIRPA TTBRJS9 Strong Altered Expression [61]
SIRT6 TTUXYWF Strong Altered Expression [62]
SLC12A3 TTP362L Strong Biomarker [63]
SPN TTOZAX0 Strong Altered Expression [64]
SYVN1 TT8XKYM Strong Biomarker [65]
THPO TTCG5PE Strong Biomarker [66]
TXNIP TTTLDZK Strong Biomarker [67]
UBE2T TT0A1R8 Strong Biomarker [25]
USP2 TTUEQ1W Strong Biomarker [68]
VSIR TT51SK8 Strong Altered Expression [69]
------------------------------------------------------------------------------------
⏷ Show the Full List of 74 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC27A5 DT0TQS3 Strong Genetic Variation [70]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CMPK1 DEMPH4I Strong Biomarker [71]
CYP7A1 DEDZRQ1 Strong Biomarker [72]
------------------------------------------------------------------------------------
This Disease Is Related to 172 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
BAALC OTUZSRVF Limited Biomarker [73]
BCR OTCN76C1 Limited Biomarker [74]
CBFB OTIAC6W4 Limited Genetic Variation [75]
CDKN2B OTAG24N1 Limited Biomarker [76]
CPOX OTIAY121 Limited Biomarker [11]
GATA2 OTBP2QQ2 Limited Genetic Variation [77]
GFI1 OT9HB9H8 Limited Biomarker [78]
HAVCR2 OTOL603T Limited Altered Expression [79]
HOXA9 OTKNK5H0 Limited Altered Expression [80]
IDH2 OTTQA4PB Limited Biomarker [81]
MECOM OTP983W8 Limited Genetic Variation [77]
MLLT10 OTURMDV7 Limited Genetic Variation [82]
MLLT3 OTXH4DDG Limited Altered Expression [47]
PTPA OTRGFOI7 Limited Genetic Variation [83]
RUNX1T1 OT30DED5 Limited Altered Expression [84]
TBC1D9 OTSSCTB5 Limited Altered Expression [85]
TBX22 OTT1RM26 Limited Biomarker [11]
TESC OTI8C76M Limited Biomarker [63]
TET2 OTKKT03T Limited Biomarker [27]
TSC1 OTFF4YZ7 Limited Biomarker [63]
TSC2 OT47LWI9 Limited Genetic Variation [86]
FANCM OTNJG99Z moderate Biomarker [25]
MSH3 OTD3YPVL moderate Altered Expression [2]
RAD51C OTUD6SY5 moderate Biomarker [25]
AADAC OT8VACT2 Strong Genetic Variation [87]
ABI1 OT5H4M62 Strong Genetic Variation [88]
ACOT7 OT7C68YV Strong Altered Expression [89]
ADGRG1 OTQBB8NT Strong Altered Expression [6]
AFDN OTTRU341 Strong Biomarker [90]
AKAP13 OTOZAR14 Strong Biomarker [91]
AMFR OTQRX7LC Strong Biomarker [92]
APOBEC3A OTYO6F5P Strong Altered Expression [93]
ARHGAP26 OTNGQU7A Strong Genetic Variation [94]
ARID1B OTILK3Q7 Strong Biomarker [95]
ARID3A OTZZ4SFP Strong Biomarker [95]
ASH2L OT3HG324 Strong Altered Expression [96]
ASXL1 OTX931AW Strong Biomarker [27]
ASXL2 OTNG4E2M Strong Genetic Variation [84]
BABAM2 OTOY7FNT Strong Altered Expression [97]
BCL2L10 OTYXQJ3I Strong Biomarker [98]
BCL2L11 OTNQQWFJ Strong Biomarker [58]
BCLAF1 OT7T8H6A Strong Biomarker [99]
BCORL1 OTPTFQN5 Strong Genetic Variation [100]
BIRC6 OTCQJAB0 Strong Altered Expression [101]
BLM OTEJOAJX Strong Biomarker [25]
BRCA1 OT5BN6VH Strong Biomarker [25]
BST1 OTAV5SE7 Strong Biomarker [102]
CAB39L OTQEBL0W Strong Genetic Variation [103]
CARTPT OTTE4V9S Strong Biomarker [104]
CBFA2T3 OTOJ10S1 Strong Genetic Variation [105]
CHD4 OTBDEHDP Strong Biomarker [106]
CHORDC1 OT3W6F1U Strong Biomarker [47]
CIRBP OTXWTPBL Strong Altered Expression [107]
CNTNAP1 OT5Y03EU Strong Genetic Variation [108]
CTC1 OTRJY7QD Strong Biomarker [25]
CTDSPL OTZJ0CZK Strong Altered Expression [109]
DDX18 OTKB9C3S Strong Biomarker [110]
DERL3 OTRZRT6Q Strong Biomarker [65]
DGUOK OT78HUZB Strong Altered Expression [111]
DUSP7 OT6Z5AHP Strong Altered Expression [112]
EBF3 OTB0IWLW Strong Posttranslational Modification [113]
EFS OT06O7XL Strong Biomarker [114]
EHD3 OTOKC2G5 Strong Posttranslational Modification [115]
EIF4B OTE8TXA8 Strong Biomarker [58]
ELL OTCBN5LF Strong Genetic Variation [116]
ERCC4 OTFIOPG1 Strong Biomarker [25]
EVPL OTZIAFEK Strong Genetic Variation [108]
FANCB OTMZTXB5 Strong Biomarker [25]
FANCC OTTIDM3P Strong Biomarker [117]
FANCD2 OTVEB5LF Strong Biomarker [25]
FANCE OTKRPBW1 Strong Biomarker [25]
FANCG OT7MC8TZ Strong Biomarker [25]
FANCI OTW8E3SC Strong Biomarker [25]
FANCL OTJC7QPQ Strong Biomarker [25]
FBXW4 OTEGSZOX Strong Genetic Variation [87]
FIS1 OT2HL10J Strong Biomarker [118]
FRYL OTBN3XHN Strong Genetic Variation [119]
GAS7 OT0M5TNY Strong Biomarker [120]
GATA1 OTX1R7O1 Strong Genetic Variation [121]
GFI1B OTRDW8YO Strong Altered Expression [122]
GLIS2 OTOUUV1X Strong Altered Expression [123]
GNL3 OTILGYO4 Strong Altered Expression [124]
GPHN OTAKK1SV Strong Genetic Variation [125]
HERC5 OTZ5PR39 Strong Biomarker [72]
HIP1 OT7AKCFQ Strong Altered Expression [126]
HLA-DRB4 OTNXIHQU Strong Genetic Variation [127]
HLF OTTRK9XN Strong Biomarker [128]
HOXA4 OTNVTQDT Strong Altered Expression [129]
HOXB2 OTTD6HMV Strong Altered Expression [130]
HOXC5 OTPQTLKZ Strong Altered Expression [131]
IKBKE OT5VYOSM Strong Biomarker [132]
IKZF1 OTCW1FKL Strong Biomarker [133]
IL2RG OTRZ3OMY Strong Altered Expression [134]
IRF7 OTC1A2PQ Strong Altered Expression [135]
JARID2 OT14UM8H Strong Biomarker [136]
KAT2A OTN0W2SW Strong Biomarker [137]
KAT7 OTUN98IC Strong Altered Expression [138]
KLHL1 OTAX6SAD Strong Altered Expression [85]
LCP2 OT57KE22 Strong Biomarker [139]
LIN28B OTVWP0FN Strong Biomarker [140]
LLGL1 OTAIQSXZ Strong Biomarker [141]
MAD2L2 OT24ZO59 Strong Biomarker [25]
MAML2 OT1TSVAR Strong Biomarker [142]
MARCKSL1 OT13J2FM Strong Altered Expression [143]
MATK OTVOJJLJ Strong Biomarker [51]
MBD4 OTWR9YXE Strong Genetic Variation [144]
MEIS1 OTH9DKAD Strong Biomarker [145]
MLLT1 OT41UZU5 Strong Genetic Variation [116]
MLLT11 OTG5RVHC Strong Altered Expression [146]
MLLT6 OTOC9OGX Strong Genetic Variation [147]
MRPL28 OT4LUTZU Strong Posttranslational Modification [148]
MT1E OTXJKU4Y Strong Genetic Variation [149]
MTSS1 OT5DTDO2 Strong Biomarker [150]
MVP OTJGHJRB Strong Altered Expression [85]
MYH11 OTVNVWY3 Strong Biomarker [151]
MYH8 OT9F350W Strong Biomarker [152]
MYO1F OTOAV4AR Strong Biomarker [153]
NCOA2 OTMQFPBB Strong Biomarker [154]
NCOR1 OT04XNOU Strong Biomarker [155]
NCR2 OT2H13BX Strong Altered Expression [156]
NECTIN2 OTIE0W6O Strong Biomarker [157]
NFATC1 OT4TMERS Strong Biomarker [158]
NFE2 OTLM94BI Strong Altered Expression [159]
NONO OTN36Q6U Strong Biomarker [160]
NUP214 OTWEA19O Strong Genetic Variation [39]
NXT1 OT0VO6AY Strong Posttranslational Modification [148]
ORC5 OTFPW8DE Strong Genetic Variation [161]
OSCP1 OTZ4IFGJ Strong Biomarker [56]
PA2G4 OT7IG7HT Strong Altered Expression [162]
PALB2 OT6DNDBG Strong Biomarker [25]
PARP9 OT7K4494 Strong Genetic Variation [70]
PHF23 OTVF5VZC Strong Biomarker [163]
PHF6 OT8DXI40 Strong Genetic Variation [164]
PIGN OTHHTJKX Strong Altered Expression [165]
PIR OT8ALXHU Strong Altered Expression [166]
PLS3 OTYBM4PK Strong Altered Expression [167]
PMAIP1 OTXEE550 Strong Altered Expression [168]
POU4F1 OTMHYGWQ Strong Altered Expression [169]
PPP2R2A OT9297OG Strong Altered Expression [170]
PRDM16 OT0BGA27 Strong Genetic Variation [171]
PRKD2 OTIFSVI8 Strong Biomarker [172]
PSMA7 OTPHI6ST Strong Biomarker [173]
PTPRA OTZA82J1 Strong Biomarker [3]
RING1 OTCWTAX0 Strong Altered Expression [123]
RNF2 OTFPLOIN Strong Altered Expression [123]
ROBO2 OTFJ9FQW Strong Altered Expression [174]
RPRM OTNNBAS1 Strong Posttranslational Modification [175]
RREB1 OT62460U Strong Altered Expression [176]
RTL1 OTOT33IM Strong Biomarker [177]
SAMHD1 OTBCIBC7 Strong Biomarker [178]
SBDS OTHDCCIB Strong Biomarker [25]
SEPTIN2 OT3G33TM Strong Biomarker [24]
SEPTIN9 OT1VMRFQ Strong Genetic Variation [179]
SIPA1L3 OTNYFUM3 Strong Genetic Variation [180]
SLX4 OTF6236I Strong Biomarker [25]
SMAD5 OTQNSVCQ Strong Genetic Variation [181]
SMR3B OTL5HNM8 Strong Biomarker [22]
SRSF2 OTVDHO6U Strong Biomarker [4]
SSX2 OT2Z6RLL Strong Altered Expression [182]
SUB1 OTK71JYU Strong Posttranslational Modification [148]
SYCE1L OTXU44F3 Strong Altered Expression [85]
SYCP3 OTKOF54H Strong Altered Expression [109]
TANK OTZSGFIK Strong Altered Expression [183]
TBCE OTGBSTKS Strong Biomarker [184]
TFE3 OTM99ZWH Strong Genetic Variation [185]
TIGAR OTR7NMRJ Strong Biomarker [186]
TLE1 OT50MRZ1 Strong Biomarker [187]
TLE4 OT4QEH6T Strong Biomarker [187]
TLE5 OTEH0BFG Strong Biomarker [188]
TMEM132D OTV6I4Z0 Strong Biomarker [189]
TRIB2 OTHSX3MX Strong Biomarker [190]
TTC4 OTAPMYXU Strong Biomarker [191]
------------------------------------------------------------------------------------
⏷ Show the Full List of 172 DOT(s)

References

1 Daunorubicin FDA Label
2 The glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol overcomes the MDR1-P-glycoprotein and MRP1-mediated multidrug resistance in acute myeloid leukemia cells.Cancer Chemother Pharmacol. 2009 Jul;64(2):419-24. doi: 10.1007/s00280-009-0960-6. Epub 2009 Mar 15.
3 Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML).Leukemia. 2002 May;16(5):833-9. doi: 10.1038/sj.leu.2402496.
4 Targeted molecular characterization shows differences between primary and secondary myelofibrosis.Genes Chromosomes Cancer. 2020 Jan;59(1):30-39. doi: 10.1002/gcc.22789. Epub 2019 Sep 2.
5 Negative CD19 expression is associated with inferior relapse-free survival in children with RUNX1-RUNX1T1-positive acute myeloid leukaemia: results from the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 study.Br J Haematol. 2019 Nov;187(3):372-376. doi: 10.1111/bjh.16080. Epub 2019 Jun 27.
6 High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML.Cancer Med. 2019 Apr;8(4):1771-1778. doi: 10.1002/cam4.2053. Epub 2019 Mar 7.
7 MiR-29b/Sp1/FUT4 axis modulates the malignancy of leukemia stem cells by regulating fucosylation via Wnt/-catenin pathway in acute myeloid leukemia.J Exp Clin Cancer Res. 2019 May 16;38(1):200. doi: 10.1186/s13046-019-1179-y.
8 The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML.Oncogene. 2018 May;37(20):2687-2701. doi: 10.1038/s41388-018-0150-2. Epub 2018 Mar 1.
9 CSF3R mutations were associated with an unfavorable prognosis in patients with acute myeloid leukemia with CEBPA double mutations.Ann Hematol. 2019 Jul;98(7):1641-1646. doi: 10.1007/s00277-019-03699-7. Epub 2019 Apr 30.
10 Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML.Sci Rep. 2016 Nov 3;6:36199. doi: 10.1038/srep36199.
11 CPX-351 (vyxeos) in AML.Leuk Lymphoma. 2020 Feb;61(2):288-297. doi: 10.1080/10428194.2019.1660970. Epub 2019 Sep 24.
12 In vivo efficacy of mutant IDH1 inhibitor HMS-101 and structural resolution of distinct binding site.Leukemia. 2020 Feb;34(2):416-426. doi: 10.1038/s41375-019-0582-x. Epub 2019 Oct 4.
13 CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission.Blood Cancer J. 2017 Jun 2;7(6):e567. doi: 10.1038/bcj.2017.52.
14 Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML.Cell Death Dis. 2019 Dec 4;10(12):917. doi: 10.1038/s41419-019-2156-2.
15 MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53.PLoS One. 2014 Nov 18;9(11):e113088. doi: 10.1371/journal.pone.0113088. eCollection 2014.
16 Expression of MDM2 and p16 in angiomyolipoma.Hum Pathol. 2018 May;75:34-40. doi: 10.1016/j.humpath.2018.01.022. Epub 2018 Feb 10.
17 Reduced Neutrophil Elastase Activity and Neutrophil Extracellular Traps in Pediatric Acute Myeloid Leukemia May Increase the Rate of Infections.J Pediatr Hematol Oncol. 2018 May;40(4):e248-e252. doi: 10.1097/MPH.0000000000001015.
18 NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML.Blood. 2019 May 23;133(21):2305-2319. doi: 10.1182/blood-2018-12-889725. Epub 2019 Feb 27.
19 Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis.Leukemia. 2019 Jul;33(7):1635-1649. doi: 10.1038/s41375-018-0368-6. Epub 2019 Jan 28.
20 High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial.Br J Haematol. 2016 Feb;172(4):581-91. doi: 10.1111/bjh.13869. Epub 2015 Dec 18.
21 DNMT3A mutations in Chinese childhood acute myeloid leukemia.Medicine (Baltimore). 2017 Aug;96(31):e7620. doi: 10.1097/MD.0000000000007620.
22 Non-canonical activation of -catenin by PRL-3 phosphatase in acute myeloid leukemia.Oncogene. 2019 Feb;38(9):1508-1519. doi: 10.1038/s41388-018-0526-3. Epub 2018 Oct 10.
23 Immune evasion by oncogenic proteins of acute myeloid leukemia.Blood. 2014 Mar 6;123(10):1535-43. doi: 10.1182/blood-2013-09-526590. Epub 2014 Jan 21.
24 SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23).Oncogene. 2006 Oct 5;25(45):6147-52. doi: 10.1038/sj.onc.1209626. Epub 2006 May 8.
25 Germline Genetic Predisposition to Hematologic Malignancy.J Clin Oncol. 2017 Mar 20;35(9):1018-1028. doi: 10.1200/JCO.2016.70.8644. Epub 2017 Feb 13.
26 BCAT1 restricts KG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.Nature. 2017 Nov 16;551(7680):384-388. doi: 10.1038/nature24294. Epub 2017 Nov 8.
27 Clonal dynamics in a case of acute monoblastic leukemia that later developed myeloproliferative neoplasm.Int J Hematol. 2018 Aug;108(2):213-217. doi: 10.1007/s12185-018-2419-1. Epub 2018 Feb 7.
28 Suppression of GPR56 expression by pyrrole-imidazole polyamide represents a novel therapeutic drug for AML with high EVI1 expression.Sci Rep. 2018 Sep 13;8(1):13741. doi: 10.1038/s41598-018-32205-8.
29 Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia.Cancer Biomark. 2018;22(3):587-595. doi: 10.3233/CBM-181368.
30 Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin-Frankfurt-Mnster study group.Haematologica. 2019 Jan;104(1):120-127. doi: 10.3324/haematol.2018.191841. Epub 2018 Aug 9.
31 The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia.Mol Cancer. 2017 Jul 19;16(1):126. doi: 10.1186/s12943-017-0692-x.
32 Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96.PLoS One. 2012;7(8):e42426. doi: 10.1371/journal.pone.0042426. Epub 2012 Aug 3.
33 CDA as a predictive marker for life-threatening toxicities in patients with AML treated with cytarabine.Blood Adv. 2018 Mar 13;2(5):462-469. doi: 10.1182/bloodadvances.2017014126.
34 A kinase-independent role for CDK8 in BCR-ABL1(+) leukemia.Nat Commun. 2019 Oct 18;10(1):4741. doi: 10.1038/s41467-019-12656-x.
35 Prognostic and Clinicopathological Significance of MiR-155 in Hematologic Malignancies: A Systematic Review and Meta-analysis.J Cancer. 2019 Jan 1;10(3):654-664. doi: 10.7150/jca.28537. eCollection 2019.
36 Revisiting CLEC12A as leukaemic stem cell marker in AML: highlighting the necessity of precision diagnostics in patients eligible for targeted therapy.Br J Haematol. 2019 Mar;184(5):769-781. doi: 10.1111/bjh.15711. Epub 2018 Dec 5.
37 Small Molecules Co-targeting CKI and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models.Cell. 2018 Sep 20;175(1):171-185.e25. doi: 10.1016/j.cell.2018.07.045. Epub 2018 Aug 23.
38 Enhanced Anti-Leukemic Effects through Induction of Immunomodulating Microenvironment by Blocking CXCR4 and PD-L1 in an AML Mouse Model.Immunol Invest. 2019 Jan;48(1):96-105. doi: 10.1080/08820139.2018.1497057. Epub 2018 Sep 11.
39 A novel variant translocation (1;9)(p22;q34) resulting in a DEK/NUP214 fusion gene in a patient with acute myeloid leukemia: A case report.Oncol Lett. 2017 Dec;14(6):7021-7024. doi: 10.3892/ol.2017.7133. Epub 2017 Oct 3.
40 Nuclear, not cytoplasmic, PKR maneuvers in AML.Blood. 2015 Sep 24;126(13):1523-4. doi: 10.1182/blood-2015-08-661421.
41 Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells.Leukemia. 2017 Jun;31(6):1434-1442. doi: 10.1038/leu.2016.349. Epub 2016 Nov 25.
42 Flow cytometric analysis of CD64 expression pattern and density in the diagnosis of acute promyelocytic leukemia: a multi-center study in Shanghai, China.Oncotarget. 2017 Sep 11;8(46):80625-80637. doi: 10.18632/oncotarget.20814. eCollection 2017 Oct 6.
43 Human GM-CSF receptor alpha-chain gene is highly polymorphic but not rearranged in AML.Leukemia. 1992 Sep;6(9):893-7.
44 Endoplasmic reticulum protein GliPR1 regulates G protein signaling and the cell cycle and is overexpressed in AML.Oncol Rep. 2013 Nov;30(5):2254-62. doi: 10.3892/or.2013.2716. Epub 2013 Sep 4.
45 IL1RAP potentiates multiple oncogenic signaling pathways in AML.J Exp Med. 2018 Jun 4;215(6):1709-1727. doi: 10.1084/jem.20180147. Epub 2018 May 17.
46 Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.Cell Signal. 2018 Sep;49:87-94. doi: 10.1016/j.cellsig.2018.05.006. Epub 2018 May 28.
47 C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation.Leukemia. 2018 Mar;32(3):828-836. doi: 10.1038/leu.2017.280. Epub 2017 Sep 5.
48 CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML.Nat Chem Biol. 2019 May;15(5):529-539. doi: 10.1038/s41589-019-0263-0. Epub 2019 Apr 15.
49 Targeting histone demethylases KDM5A and KDM5B in AML cancer cells: A comparative view.Leuk Res. 2018 May;68:105-111. doi: 10.1016/j.leukres.2018.02.003. Epub 2018 Feb 7.
50 Azacitidine resistance caused by LAMP2 deficiency: a therapeutic window for the use of autophagy inhibitors in MDS/AML patients?.Autophagy. 2019 May;15(5):927-929. doi: 10.1080/15548627.2019.1586259. Epub 2019 Mar 1.
51 Transcriptional memory of cells of origin overrides -catenin requirement of MLL cancer stem cells.EMBO J. 2017 Nov 2;36(21):3139-3155. doi: 10.15252/embj.201797994. Epub 2017 Oct 4.
52 Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML.Blood. 2014 Apr 10;123(15):2412-5. doi: 10.1182/blood-2013-10-532374. Epub 2014 Mar 4.
53 A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML.Mol Ther. 2018 Oct 3;26(10):2487-2495. doi: 10.1016/j.ymthe.2018.08.001. Epub 2018 Aug 7.
54 HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias.Oncogene. 2013 Nov 28;32(48):5471-80. doi: 10.1038/onc.2013.175. Epub 2013 May 27.
55 NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML.Oncoimmunology. 2017 Mar 24;6(12):e1307491. doi: 10.1080/2162402X.2017.1307491. eCollection 2017.
56 HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML.Leukemia. 2013 Jun;27(6):1358-68. doi: 10.1038/leu.2012.366. Epub 2012 Dec 18.
57 PRL-2 increases Epo and IL-3 responses in hematopoietic cells.Blood Cells Mol Dis. 2010 Apr 15;44(4):209-14. doi: 10.1016/j.bcmd.2010.02.013. Epub 2010 Mar 11.
58 FLT3-ITD Activates RSK1 to Enhance Proliferation and Survival of AML Cells by Activating mTORC1 and eIF4B Cooperatively with PIM or PI3K and by Inhibiting Bad and BIM.Cancers (Basel). 2019 Nov 20;11(12):1827. doi: 10.3390/cancers11121827.
59 Association of genetic polymorphisms in genes involved in Ara-C and dNTP metabolism pathway with chemosensitivity and prognosis of adult acute myeloid leukemia (AML).J Transl Med. 2018 Apr 10;16(1):90. doi: 10.1186/s12967-018-1463-1.
60 RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs.Blood Adv. 2019 Feb 12;3(3):320-332. doi: 10.1182/bloodadvances.2018024422.
61 Eutopic endometrium from patients with endometriosis modulates the expression of CD36 and SIRP- in peritoneal macrophages.J Obstet Gynaecol Res. 2019 May;45(5):1045-1057. doi: 10.1111/jog.13938. Epub 2019 Mar 6.
62 Strong Correlation between the Expression Levels of HDAC4 and SIRT6 in Hematological Malignancies of the Adults.Pathol Oncol Res. 2017 Jul;23(3):493-504. doi: 10.1007/s12253-016-0139-5. Epub 2016 Oct 20.
63 How many surgically-treated angiomyolipomas are related to tuberous sclerosis complex? Insights from a retrospective multicenter study.Minerva Urol Nefrol. 2020 Apr;72(2):200-206. doi: 10.23736/S0393-2249.19.03522-7. Epub 2019 Oct 10.
64 Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice.Blood Adv. 2017 Aug 18;1(19):1551-1564. doi: 10.1182/bloodadvances.2017008342. eCollection 2017 Aug 22.
65 A novel unbalanced whole-arm translocation der(3;10)(q10;q10) in acute monocytic leukemia.Cancer Genet Cytogenet. 2010 Jun;199(2):134-8. doi: 10.1016/j.cancergencyto.2010.02.006.
66 Thrombopoietin mimetics for patients with myelodysplastic syndromes.Cochrane Database Syst Rev. 2017 Sep 30;9(9):CD009883. doi: 10.1002/14651858.CD009883.pub2.
67 The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML.Blood. 2011 Sep 8;118(10):2830-9. doi: 10.1182/blood-2010-07-294827. Epub 2011 Jul 6.
68 Whole transcriptome sequencing reveals a KMT2A-USP2 fusion in infant acute myeloid leukemia.Genes Chromosomes Cancer. 2019 Sep;58(9):669-672. doi: 10.1002/gcc.22751. Epub 2019 Apr 8.
69 VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML.Oncoimmunology. 2018 Jul 11;7(9):e1469594. doi: 10.1080/2162402X.2018.1469594. eCollection 2018.
70 Clinical and laboratory features of adult biphenotypic acute leukemia.Asia Pac J Clin Oncol. 2013 Jun;9(2):146-54. doi: 10.1111/j.1743-7563.2012.01571.x. Epub 2012 Jul 9.
71 Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells.J Exp Clin Cancer Res. 2017 Feb 1;36(1):22. doi: 10.1186/s13046-017-0493-5.
72 Construction of prognostic risk prediction model based on high-throughput sequencing expression profile data in childhood acute myeloid leukemia.Blood Cells Mol Dis. 2019 Jul;77:43-50. doi: 10.1016/j.bcmd.2019.03.008. Epub 2019 Mar 28.
73 The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia.Blood Cancer J. 2015 Oct 2;5(10):e352. doi: 10.1038/bcj.2015.76.
74 Relatively favorable outcome after allogeneic stem cell transplantation for BCR-ABL1-positive AML: A survey from the acute leukemia working party of the European Society for blood and marrow transplantation (EBMT).Am J Hematol. 2018 Jan;93(1):31-39. doi: 10.1002/ajh.24928. Epub 2017 Oct 31.
75 Randomized phase-II trial evaluating induction therapy with idarubicin and etoposide plus sequential or concurrent azacitidine and maintenance therapy with azacitidine.Leukemia. 2019 Aug;33(8):1923-1933. doi: 10.1038/s41375-019-0395-y. Epub 2019 Feb 6.
76 CDKN2B Methylation Correlates with Survival in AML Patients.Iran J Pharm Res. 2017 Fall;16(4):1600-1611.
77 Lenalidomide Plus Hypomethylating Agent as a Treatment Option in Acute Myeloid Leukemia With Recurrent Genetic Abnormalities-AML With inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM.Clin Lymphoma Myeloma Leuk. 2020 Jan;20(1):24-30. doi: 10.1016/j.clml.2019.09.615. Epub 2019 Sep 28.
78 LSD1 inhibition by tranylcypromine derivatives interferes with GFI1-mediated repression of PU.1 target genes and induces differentiation in AML.Leukemia. 2019 Jun;33(6):1411-1426. doi: 10.1038/s41375-018-0375-7. Epub 2019 Jan 24.
79 Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy.J Immunother Cancer. 2019 Jul 10;7(1):175. doi: 10.1186/s40425-019-0611-3.
80 Aberrant Expression of HOXA5 and HOXA9 in AML.Asian Pac J Cancer Prev. 2015;16(9):3941-4. doi: 10.7314/apjcp.2015.16.9.3941.
81 Detection Of Mutations In The Isocitrate Dehydrogenase Genes (IDH1/IDH2) Using castPCR(TM) In Patients With AML And Their Clinical Impact In Mexico City.Onco Targets Ther. 2019 Oct 1;12:8023-8031. doi: 10.2147/OTT.S219703. eCollection 2019.
82 PICALM-MLLT10 acute myeloid leukemia: a French cohort of 18 patients.Leuk Res. 2012 Nov;36(11):1365-9. doi: 10.1016/j.leukres.2012.07.008. Epub 2012 Aug 5.
83 Novel B55-PP2A mutations in AML promote AKT T308 phosphorylation and sensitivity to AKT inhibitor-induced growth arrest.Oncotarget. 2016 Sep 20;7(38):61081-61092. doi: 10.18632/oncotarget.11209.
84 Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study.Ann Hematol. 2019 Jan;98(1):83-91. doi: 10.1007/s00277-018-3492-5. Epub 2018 Sep 24.
85 Lung resistance-related protein (LRP) predicts favorable therapeutic outcome in Acute Myeloid Leukemia.Sci Rep. 2019 Jan 23;9(1):378. doi: 10.1038/s41598-018-36780-8.
86 Two novel TSC2 mutations in renal epithelioid angiomyolipoma sensitive to everolimus.Cancer Biol Ther. 2020;21(1):4-11. doi: 10.1080/15384047.2019.1665955. Epub 2019 Oct 10.
87 Early induction intensification with cladribine, cytarabine, and mitoxantrone (CLAM) in AML patients treated with the DAC induction regimen: a prospective, non-randomized, phase II study of the Polish Adult Leukemia Group (PALG).Leuk Lymphoma. 2020 Mar;61(3):588-603. doi: 10.1080/10428194.2019.1678151. Epub 2019 Oct 29.
88 Is t(10;11)(p11.2;q23) involving MLL and ABI-1 genes associated with congenital acute monocytic leukemia?.Cancer Genet Cytogenet. 2002 Nov;139(1):57-9. doi: 10.1016/s0165-4608(02)00616-7.
89 Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients.Cancer Biomark. 2019;26(4):441-449. doi: 10.3233/CBM-182287.
90 MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.Blood. 2014 Jul 10;124(2):263-72. doi: 10.1182/blood-2013-09-525741. Epub 2014 Apr 2.
91 Myelodysplastic syndrome in children: differentiation from acute myeloid leukemia with a low blast count.Leukemia. 1997 Feb;11(2):206-11. doi: 10.1038/sj.leu.2400558.
92 Autocrine motility factor receptor promotes the proliferation of human acute monocytic leukemia THP-1 cells.Int J Mol Med. 2015 Sep;36(3):627-32. doi: 10.3892/ijmm.2015.2267. Epub 2015 Jun 30.
93 Cytosine Deaminase APOBEC3A Sensitizes Leukemia Cells to Inhibition of the DNA Replication Checkpoint.Cancer Res. 2017 Sep 1;77(17):4579-4588. doi: 10.1158/0008-5472.CAN-16-3394. Epub 2017 Jun 27.
94 MLL/GRAF fusion in an infant acute monocytic leukemia (AML M5b) with a cytogenetically cryptic ins(5;11)(q31;q23q23).Genes Chromosomes Cancer. 2004 Dec;41(4):400-4. doi: 10.1002/gcc.20097.
95 Glasdegib plus intensive/nonintensive chemotherapy in untreated acute myeloid leukemia: BRIGHT AML 1019 Phase III trials.Future Oncol. 2019 Nov;15(31):3531-3545. doi: 10.2217/fon-2019-0373. Epub 2019 Sep 13.
96 Low expression of ASH2L protein correlates with a favorable outcome in acute myeloid leukemia.Leuk Lymphoma. 2017 May;58(5):1207-1218. doi: 10.1080/10428194.2016.1235272. Epub 2016 Oct 13.
97 High BRE expression predicts favorable outcome in adult acute myeloid leukemia, in particular among MLL-AF9-positive patients.Blood. 2011 Nov 17;118(20):5613-21. doi: 10.1182/blood-2011-06-359182. Epub 2011 Sep 21.
98 BCL2L10 is a predictive factor for resistance to azacitidine in MDS and AML patients.Oncotarget. 2012 Apr;3(4):490-501. doi: 10.18632/oncotarget.481.
99 miR-194-5p/BCLAF1 deregulation in AML tumorigenesis.Leukemia. 2018 Feb;32(2):573. doi: 10.1038/leu.2017.310. Epub 2017 Dec 22.
100 ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis.Genes Chromosomes Cancer. 2017 May;56(5):382-393. doi: 10.1002/gcc.22443. Epub 2017 Feb 14.
101 BIRC6/Apollon gene expression in childhood acute leukemia: impact on therapeutic response and prognosis.Eur J Haematol. 2012 Feb;88(2):118-27. doi: 10.1111/j.1600-0609.2011.01734.x. Epub 2012 Jan 4.
102 Targeting CD157 in AML using a novel, Fc-engineered antibody construct.Oncotarget. 2017 May 30;8(22):35707-35717. doi: 10.18632/oncotarget.16060.
103 Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/-catenin signaling pathway.PLoS One. 2017 Oct 23;12(10):e0186868. doi: 10.1371/journal.pone.0186868. eCollection 2017.
104 Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia.Mol Ther. 2015 Jan;23(1):184-91. doi: 10.1038/mt.2014.164. Epub 2014 Sep 1.
105 Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML.Blood Adv. 2019 May 14;3(9):1379-1393. doi: 10.1182/bloodadvances.2018028514.
106 Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation.Blood. 2015 Sep 17;126(12):1462-72. doi: 10.1182/blood-2015-03-631606. Epub 2015 Aug 11.
107 Effect of moderate hypothermia on gene expression by THP-1 cells: a DNA microarray study.Physiol Genomics. 2006 Jun 16;26(1):91-8. doi: 10.1152/physiolgenomics.00296.2005. Epub 2006 Apr 4.
108 Establishment of a novel human myeloid leukaemia cell line (HNT-34) with t(3;3)(q21;q26), t(9;22)(q34;q11) and the expression of EVI1 gene, P210 and P190 BCR/ABL chimaeric transcripts from a patient with AML after MDS with 3q21q26 syndrome.Br J Haematol. 1997 Aug;98(2):399-407. doi: 10.1046/j.1365-2141.1997.2143029.x.
109 Expression of serologically identified tumor antigens in acute leukemias.Leuk Res. 2003 Jul;27(7):655-60. doi: 10.1016/s0145-2126(02)00230-8.
110 Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML.Blood. 2011 Jul 28;118(4):903-15. doi: 10.1182/blood-2010-11-318022. Epub 2011 Jun 7.
111 Real-time quantitative PCR assays for deoxycytidine kinase, deoxyguanosine kinase and 5'-nucleotidase mRNA measurement in cell lines and in patients with leukemia.Leukemia. 2002 Mar;16(3):386-92. doi: 10.1038/sj.leu.2402388.
112 Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia.Cancer Lett. 2003 Sep 25;199(2):185-92. doi: 10.1016/s0304-3835(03)00352-5.
113 Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia.J Exp Clin Cancer Res. 2015 Jan 22;34(1):4. doi: 10.1186/s13046-014-0118-1.
114 The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia.Leukemia. 2019 Feb;33(2):348-357. doi: 10.1038/s41375-018-0227-5. Epub 2018 Aug 8.
115 Discovery of epigenetically silenced genes in acute myeloid leukemias.Leukemia. 2007 May;21(5):1026-34. doi: 10.1038/sj.leu.2404611. Epub 2007 Mar 1.
116 A New Complex Karyotype Involving a KMT2A-r Variant Three-Way Translocation in a Rare Clinical Presentation of a Pediatric Patient with Acute Myeloid Leukemia.Cytogenet Genome Res. 2019;157(4):213-219. doi: 10.1159/000499640. Epub 2019 Apr 12.
117 Discussing and managing hematologic germ line variants.Blood. 2016 Nov 24;128(21):2497-2503. doi: 10.1182/blood-2016-06-716704.
118 AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells.Cell Stem Cell. 2018 Jul 5;23(1):86-100.e6. doi: 10.1016/j.stem.2018.05.021. Epub 2018 Jun 14.
119 Translocation (4;11)(p12;q23) with rearrangement of FRYL and MLL in therapy-related acute myeloid leukemia.Cancer Genet Cytogenet. 2007 Sep;177(2):143-6. doi: 10.1016/j.cancergencyto.2007.05.021.
120 MLL/GAS7 fusion in a pediatric case of t(11;17)(q23;p13)-positive precursor B-cell acute lymphoblastic leukemia.Haematologica. 2006 Sep;91(9):1287-8.
121 Acute myeloid leukemia in children and adolescents: identification of new molecular targets brings promise of new therapies.Hematology Am Soc Hematol Educ Program. 2015;2015:507-13. doi: 10.1182/asheducation-2015.1.507.
122 Growth factor independent 1b (Gfi1b) and a new splice variant of Gfi1b are highly expressed in patients with acute and chronic leukemia.Int J Hematol. 2009 May;89(4):422-430. doi: 10.1007/s12185-009-0286-5. Epub 2009 Apr 10.
123 Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells.Blood. 2018 Apr 19;131(16):1833-1845. doi: 10.1182/blood-2017-05-787226. Epub 2018 Jan 25.
124 Transcript level of nucleostemin in newly diagnosed acute myeloid leukemia patients.Leuk Res. 2013 Dec;37(12):1636-41. doi: 10.1016/j.leukres.2013.09.023. Epub 2013 Sep 29.
125 t(11;14)(q23;q24) generates an MLL-human gephyrin fusion gene along with a de facto truncated MLL in acute monoblastic leukemia.Cancer Res. 2001 Mar 15;61(6):2665-9.
126 Prognostic significance of huntingtin interacting protein 1 expression on patients with acute myeloid leukemia.Sci Rep. 2017 Apr 28;7:45960. doi: 10.1038/srep45960.
127 HLA class II allele and haplotype frequencies in Iranian patients with leukemia.Iran J Allergy Asthma Immunol. 2007 Sep;6(3):137-42.
128 Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML.Blood. 2019 Jul 18;134(3):263-276. doi: 10.1182/blood.2018862383. Epub 2019 May 10.
129 The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML.Eur J Haematol. 2009 Nov;83(5):439-48. doi: 10.1111/j.1600-0609.2009.01309.x. Epub 2009 Jun 25.
130 Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.Leukemia. 2007 Sep;21(9):2000-9. doi: 10.1038/sj.leu.2404808. Epub 2007 Jun 28.
131 Differentiation and cell-type-restricted expression of HOXC4, HOXC5 and HOXC6 in myeloid leukemias and normal myeloid cells.Leukemia. 1998 Nov;12(11):1724-32. doi: 10.1038/sj.leu.2401106.
132 The kinases IKBKE and TBK1 regulate MYC-dependent survival pathways through YB-1 in AML and are targets for therapy.Blood Adv. 2018 Dec 11;2(23):3428-3442. doi: 10.1182/bloodadvances.2018016733.
133 High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis.Blood. 2002 Feb 15;99(4):1350-5. doi: 10.1182/blood.v99.4.1350.
134 Potential to target dysregulated interleukin-2 receptor expression in canine lymphoid and hematopoietic malignancies as a model for human cancer.J Immunother. 2002 Jan-Feb;25(1):36-45. doi: 10.1097/00002371-200201000-00004.
135 Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.Cell Death Dis. 2014 Dec 4;5(12):e1557. doi: 10.1038/cddis.2014.502.
136 JARID2 inhibits leukemia cell proliferation by regulating CCND1 expression.Int J Hematol. 2015 Jul;102(1):76-85. doi: 10.1007/s12185-015-1797-x. Epub 2015 May 5.
137 The acetyltransferase GCN5 maintains ATRA-resistance in non-APL AML.Leukemia. 2019 Nov;33(11):2628-2639. doi: 10.1038/s41375-019-0581-y. Epub 2019 Oct 1.
138 MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML.Exp Hematol. 2015 Sep;43(9):794-802.e4. doi: 10.1016/j.exphem.2015.05.010. Epub 2015 Jun 11.
139 Retinoic acid and 6-formylindolo(3,2-b)carbazole (FICZ) combination therapy reveals putative targets for enhancing response in non-APL AML.Leuk Lymphoma. 2019 Jul;60(7):1697-1708. doi: 10.1080/10428194.2018.1543880. Epub 2018 Dec 20.
140 LIN28B Activation by PRL-3 Promotes Leukemogenesis and a Stem Cell-like Transcriptional Program in AML.Mol Cancer Res. 2017 Mar;15(3):294-303. doi: 10.1158/1541-7786.MCR-16-0275-T. Epub 2016 Dec 23.
141 The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML.J Exp Med. 2013 Jan 14;210(1):15-22. doi: 10.1084/jem.20120596. Epub 2012 Dec 31.
142 Identification of a novel fusion gene MLL-MAML2 in secondary acute myelogenous leukemia and myelodysplastic syndrome with inv(11)(q21q23).Genes Chromosomes Cancer. 2007 Sep;46(9):813-9. doi: 10.1002/gcc.20467.
143 Multidrug resistance-associated protein in acute myeloid leukemia: No impact on treatment outcome.Clin Cancer Res. 1997 Aug;3(8):1419-25.
144 MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML.Blood. 2018 Oct 4;132(14):1526-1534. doi: 10.1182/blood-2018-05-852566. Epub 2018 Jul 26.
145 Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1-driven AML.Cell Stem Cell. 2012 Feb 3;10(2):210-7. doi: 10.1016/j.stem.2012.01.004.
146 Elevated expression of the AF1q gene, an MLL fusion partner, is an independent adverse prognostic factor in pediatric acute myeloid leukemia.Blood. 2004 Nov 15;104(10):3058-63. doi: 10.1182/blood-2003-12-4347. Epub 2004 Jun 24.
147 Identification of a chromosomal breakpoint and detection of a novel form of an MLL-AF17 fusion transcript in acute monocytic leukemia with t(11;17)(q23;q21).Int J Hematol. 2005 Jul;82(1):38-41. doi: 10.1532/IJH97.05025.
148 KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients.Leuk Res. 2001 Oct;25(10):917-25. doi: 10.1016/s0145-2126(01)00053-4.
149 Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia.Clin Cancer Res. 2016 Feb 15;22(4):868-76. doi: 10.1158/1078-0432.CCR-15-0481. Epub 2015 Oct 12.
150 Identification of the Adapter Molecule MTSS1 as a Potential Oncogene-Specific Tumor Suppressor in Acute Myeloid Leukemia.PLoS One. 2015 May 21;10(5):e0125783. doi: 10.1371/journal.pone.0125783. eCollection 2015.
151 Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients.Leukemia. 2007 Apr;21(4):725-31. doi: 10.1038/sj.leu.2404531. Epub 2007 Feb 8.
152 Truncation of MYH8 tail in AML: a novel prognostic marker with increase cell migration and epithelial-mesenchymal transition utilizing RAF/MAPK pathway.Carcinogenesis. 2020 Jul 10;41(6):817-827. doi: 10.1093/carcin/bgz146.
153 The MYO1F, unconventional myosin type 1F, gene is fused to MLL in infant acute monocytic leukemia with a complex translocation involving chromosomes 7, 11, 19 and 22.Oncogene. 2005 Aug 4;24(33):5191-7. doi: 10.1038/sj.onc.1208711.
154 Consistent fusion of MOZ and TIF2 in AML with inv(8)(p11q13).Cancer Genet Cytogenet. 1999 Aug;113(1):70-2. doi: 10.1016/s0165-4608(99)00007-2.
155 Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells.BMC Genomics. 2015 Apr 17;16(1):309. doi: 10.1186/s12864-015-1445-0.
156 Survival in acute myeloid leukemia is associated with NKp44 splice variants.Oncotarget. 2016 May 31;7(22):32933-45. doi: 10.18632/oncotarget.8782.
157 Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option.Oncogene. 2018 Sep;37(39):5269-5280. doi: 10.1038/s41388-018-0288-y. Epub 2018 May 31.
158 Nuclear factor of activated T-cells, NFATC1, governs FLT3(ITD)-driven hematopoietic stem cell transformation and a poor prognosis in AML.J Hematol Oncol. 2019 Jul 8;12(1):72. doi: 10.1186/s13045-019-0765-y.
159 Altered NFE2 activity predisposes to leukemic transformation and myelosarcoma with AML-specific aberrations.Blood. 2019 Apr 18;133(16):1766-1777. doi: 10.1182/blood-2018-09-875047. Epub 2019 Feb 12.
160 Knockdown of p54nrb inhibits migration, invasion and TNF- release of human acute monocytic leukemia THP1 cells.Oncol Rep. 2016 Jun;35(6):3742-8. doi: 10.3892/or.2016.4756. Epub 2016 Apr 20.
161 Mutation analysis of the origin recognition complex subunit 5 (ORC5L) gene in adult patients with myeloid leukemias exhibiting deletions of chromosome band 7q22.Hum Genet. 2001 Apr;108(4):304-9. doi: 10.1007/s004390100498.
162 Expression and Role of the ErbB3-Binding Protein 1 in Acute Myelogenous Leukemic Cells.Clin Cancer Res. 2016 Jul 1;22(13):3320-7. doi: 10.1158/1078-0432.CCR-15-2282. Epub 2016 Jan 26.
163 A cryptic translocation leading to NUP98-PHF23 fusion in AML.Best Pract Res Clin Haematol. 2016 Dec;29(4):320-323. doi: 10.1016/j.beha.2016.10.002. Epub 2016 Oct 18.
164 Somatic mutation of PHF6 gene in T-cell acute lymphoblatic leukemia, acute myelogenous leukemia and hepatocellular carcinoma.Acta Oncol. 2012 Jan;51(1):107-11. doi: 10.3109/0284186X.2011.592148. Epub 2011 Jul 8.
165 PIGN gene expression aberration is associated with genomic instability and leukemic progression in acute myeloid leukemia with myelodysplastic features.Oncotarget. 2017 May 2;8(18):29887-29905. doi: 10.18632/oncotarget.15136.
166 Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation.Leukemia. 2010 Feb;24(2):429-37. doi: 10.1038/leu.2009.247. Epub 2009 Dec 10.
167 The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia.Cancers (Basel). 2019 Oct 26;11(11):1663. doi: 10.3390/cancers11111663.
168 APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells.Eur J Haematol. 2011 Mar;86(3):206-15. doi: 10.1111/j.1600-0609.2010.01557.x. Epub 2011 Jan 11.
169 POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature.Leukemia. 2010 May;24(5):950-7. doi: 10.1038/leu.2010.61. Epub 2010 Apr 8.
170 The protein phosphatase 2A regulatory subunit B55 is a modulator of signaling and microRNA expression in acute myeloid leukemia cells.Biochim Biophys Acta. 2014 Sep;1843(9):1969-77. doi: 10.1016/j.bbamcr.2014.05.006. Epub 2014 May 21.
171 A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation.Blood. 2003 Nov 1;102(9):3323-32. doi: 10.1182/blood-2002-12-3944. Epub 2003 Jun 19.
172 PRKD2 Promotes Progression and Chemoresistance of AML via Regulating Notch1 Pathway.Onco Targets Ther. 2019 Dec 12;12:10931-10941. doi: 10.2147/OTT.S233234. eCollection 2019.
173 Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia.Cancer Res. 2020 Feb 1;80(3):458-470. doi: 10.1158/0008-5472.CAN-18-2932. Epub 2019 Nov 29.
174 The Expression of the SLIT-ROBO Family in Adult Patients with Acute Myeloid Leukemia.Arch Immunol Ther Exp (Warsz). 2019 Apr;67(2):109-123. doi: 10.1007/s00005-019-00535-8. Epub 2019 Feb 28.
175 tp53-dependent G2 arrest mediator candidate gene, Reprimo, is down-regulated by promoter hypermethylation in pediatric acute myeloid leukemia.Leuk Lymphoma. 2015;56(10):2931-44. doi: 10.3109/10428194.2015.1011157. Epub 2015 Feb 24.
176 RAS-Responsive Element-Binding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells.Oncol Res. 2019 Jul 12;27(7):809-818. doi: 10.3727/096504018X15451301487729. Epub 2019 Apr 8.
177 Immunohistochemical and reverse transcription-polymerase chain reaction expression analysis of tyrosinase and microphthalmia-associated transcription factor in angiomyolipomas.Appl Immunohistochem Mol Morphol. 2001 Mar;9(1):29-34.
178 Selective inactivation of hypomethylating agents by SAMHD1 provides a rationale for therapeutic stratification in AML.Nat Commun. 2019 Aug 2;10(1):3475. doi: 10.1038/s41467-019-11413-4.
179 A variant-type MLL/SEPT9 fusion transcript in adult de novo acute monocytic leukemia (M5b) with t(11;17)(q23;q25).Int J Hematol. 2008 Sep;88(2):192-196. doi: 10.1007/s12185-008-0133-0. Epub 2008 Jul 19.
180 Dissecting TSC2-mutated renal and hepatic angiomyolipomas in an individual with ARID1B-associated intellectual disability.BMC Cancer. 2019 May 10;19(1):435. doi: 10.1186/s12885-019-5633-1.
181 Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4.Blood Cells Mol Dis. 2002 Mar-Apr;28(2):221-33. doi: 10.1006/bcmd.2002.0487.
182 Targeting the arginine metabolic brake enhances immunotherapy for leukaemia.Int J Cancer. 2019 Oct 15;145(8):2201-2208. doi: 10.1002/ijc.32028. Epub 2019 Jan 11.
183 Characterization of ZC3H15 as a potential TRAF-2-interacting protein implicated in the NFB pathway and overexpressed in AML.Int J Oncol. 2013 Jul;43(1):246-54. doi: 10.3892/ijo.2013.1924. Epub 2013 Apr 29.
184 The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate- or high-risk acute myeloid leukemia in first complete remission.Blood. 2012 Jun 7;119(23):5584-90. doi: 10.1182/blood-2011-11-389809. Epub 2012 Apr 24.
185 Hepatic angiomyolipomas may overexpress TFE3, but have no relevant genetic alterations.Hum Pathol. 2017 Mar;61:41-48. doi: 10.1016/j.humpath.2016.11.003. Epub 2016 Nov 16.
186 TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia.J Hematol Oncol. 2016 Nov 25;9(1):128. doi: 10.1186/s13045-016-0360-4.
187 Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival.Blood. 2008 Apr 15;111(8):4338-47. doi: 10.1182/blood-2007-07-103291. Epub 2008 Feb 7.
188 AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein.Blood. 2011 Apr 21;117(16):4328-37. doi: 10.1182/blood-2009-09-242545. Epub 2011 Jan 18.
189 The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells.Cytotherapy. 2012 Jan;14(1):91-103. doi: 10.3109/14653249.2011.613931. Epub 2011 Oct 6.
190 Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells.Sci Signal. 2018 Sep 25;11(549):eaat7951. doi: 10.1126/scisignal.aat7951.
191 The presence of central nervous system disease at diagnosis in pediatric acute myeloid leukemia does not affect survival: a Children's Oncology Group study.Pediatr Blood Cancer. 2010 Sep;55(3):414-20. doi: 10.1002/pbc.22511.