General Information of Drug Off-Target (DOT) (ID: OTRPMAUX)

DOT Name AFG3-like protein 2 (AFG3L2)
Synonyms EC 3.4.24.-; Paraplegin-like protein
Gene Name AFG3L2
Related Disease
Progressive external ophthalmoplegia ( )
Spinocerebellar ataxia type 28 ( )
Action myoclonus-renal failure syndrome ( )
Autosomal dominant cerebellar ataxia type II ( )
Cardiac arrest ( )
Cerebellar disorder ( )
Charlevoix-Saguenay spastic ataxia ( )
Coronary heart disease ( )
Dentatorubral-pallidoluysian atrophy ( )
Hereditary ataxia ( )
Hereditary spastic paraplegia 7 ( )
High blood pressure ( )
Hypercalcaemia ( )
Macular degeneration ( )
Mitochondrial disease ( )
Optic atrophy 12 ( )
Parkinsonian disorder ( )
Pathologic nystagmus ( )
Progressive myoclonus epilepsy ( )
Ptosis ( )
Spastic ataxia 5 ( )
Spinocerebellar ataxia type 1 ( )
Spinocerebellar ataxia type 2 ( )
Spinocerebellar ataxia type 5 ( )
Spinocerebellar ataxia type 6 ( )
Vascular purpura ( )
Vitamin D deficiency ( )
Xerophthalmia ( )
Isolated congenital microcephaly ( )
Spastic ataxia ( )
Cerebellar ataxia ( )
Hereditary spastic paraplegia ( )
Spinocerebellar ataxia ( )
UniProt ID
AFG32_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LNA; 6NYY
EC Number
3.4.24.-
Pfam ID
PF00004 ; PF17862 ; PF06480 ; PF01434
Sequence
MAHRCLRLWGRGGCWPRGLQQLLVPGGVGPGEQPCLRTLYRFVTTQARASRNSLLTDIIA
AYQRFCSRPPKGFEKYFPNGKNGKKASEPKEVMGEKKESKPAATTRSSGGGGGGGGKRGG
KKDDSHWWSRFQKGDIPWDDKDFRMFFLWTALFWGGVMFYLLLKRSGREITWKDFVNNYL
SKGVVDRLEVVNKRFVRVTFTPGKTPVDGQYVWFNIGSVDTFERNLETLQQELGIEGENR
VPVVYIAESDGSFLLSMLPTVLIIAFLLYTIRRGPAGIGRTGRGMGGLFSVGETTAKVLK
DEIDVKFKDVAGCEEAKLEIMEFVNFLKNPKQYQDLGAKIPKGAILTGPPGTGKTLLAKA
TAGEANVPFITVSGSEFLEMFVGVGPARVRDLFALARKNAPCILFIDEIDAVGRKRGRGN
FGGQSEQENTLNQLLVEMDGFNTTTNVVILAGTNRPDILDPALLRPGRFDRQIFIGPPDI
KGRASIFKVHLRPLKLDSTLEKDKLARKLASLTPGFSGADVANVCNEAALIAARHLSDSI
NQKHFEQAIERVIGGLEKKTQVLQPEEKKTVAYHEAGHAVAGWYLEHADPLLKVSIIPRG
KGLGYAQYLPKEQYLYTKEQLLDRMCMTLGGRVSEEIFFGRITTGAQDDLRKVTQSAYAQ
IVQFGMNEKVGQISFDLPRQGDMVLEKPYSEATARLIDDEVRILINDAYKRTVALLTEKK
ADVEKVALLLLEKEVLDKNDMVELLGPRPFAEKSTYEEFVEGTGSLDEDTSLPEGLKDWN
KEREKEKEEPPGEKVAN
Function
ATP-dependent protease which is essential for axonal and neuron development. In neurons, mediates degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU. Required for paraplegin (SPG7) maturation. After its cleavage by mitochondrial-processing peptidase (MPP), it converts paraplegin into a proteolytically active mature form. Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial-processing peptidase (MPP). Involved in the regulation of OMA1-dependent processing of OPA1. Contributes to the proteolytic degradation of GHITM upon hyperpolarization of mitochondria. Progressive GHITM degradation upon persistent hyperpolarization leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2.
Tissue Specificity Ubiquitous. Highly expressed in the cerebellar Purkinje cells.
KEGG Pathway
Spinocerebellar ataxia (hsa05017 )
Reactome Pathway
Processing of SMDT1 (R-HSA-8949664 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Progressive external ophthalmoplegia DISX4ATI Definitive Genetic Variation [1]
Spinocerebellar ataxia type 28 DISL571D Definitive Autosomal dominant [2]
Action myoclonus-renal failure syndrome DISI2BZN Strong Biomarker [3]
Autosomal dominant cerebellar ataxia type II DIS0PM39 Strong Biomarker [2]
Cardiac arrest DIS9DIA4 Strong Genetic Variation [2]
Cerebellar disorder DIS2O7WM Strong Genetic Variation [4]
Charlevoix-Saguenay spastic ataxia DISE8X81 Strong Biomarker [5]
Coronary heart disease DIS5OIP1 Strong Posttranslational Modification [6]
Dentatorubral-pallidoluysian atrophy DISHWE0K Strong Biomarker [3]
Hereditary ataxia DIS6JNI3 Strong Genetic Variation [2]
Hereditary spastic paraplegia 7 DIS4A678 Strong Genetic Variation [7]
High blood pressure DISY2OHH Strong CausalMutation [8]
Hypercalcaemia DISKQ2K7 Strong CausalMutation [8]
Macular degeneration DISLKKHD Strong CausalMutation [8]
Mitochondrial disease DISKAHA3 Strong Genetic Variation [9]
Optic atrophy 12 DISYDOB9 Strong Autosomal dominant [10]
Parkinsonian disorder DISHGY45 Strong Genetic Variation [7]
Pathologic nystagmus DIS1QSPO Strong Biomarker [11]
Progressive myoclonus epilepsy DISAMCNS Strong Biomarker [3]
Ptosis DISJZNIY Strong Genetic Variation [12]
Spastic ataxia 5 DIS0OB1V Strong Autosomal recessive [13]
Spinocerebellar ataxia type 1 DISF7BO2 Strong Biomarker [2]
Spinocerebellar ataxia type 2 DISF7WDI Strong Biomarker [2]
Spinocerebellar ataxia type 5 DISPYXJ0 Strong Biomarker [2]
Spinocerebellar ataxia type 6 DISH7224 Strong Biomarker [2]
Vascular purpura DIS6ZZMF Strong Biomarker [14]
Vitamin D deficiency DISAWKYI Strong CausalMutation [8]
Xerophthalmia DIS5B72B Strong CausalMutation [8]
Isolated congenital microcephaly DISUXHZ6 moderate Genetic Variation [15]
Spastic ataxia DISIRRA9 moderate Genetic Variation [16]
Cerebellar ataxia DIS9IRAV Disputed Genetic Variation [17]
Hereditary spastic paraplegia DISGZQV1 Limited Genetic Variation [18]
Spinocerebellar ataxia DISYMHUK Limited Biomarker [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of AFG3-like protein 2 (AFG3L2). [20]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of AFG3-like protein 2 (AFG3L2). [21]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of AFG3-like protein 2 (AFG3L2). [22]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of AFG3-like protein 2 (AFG3L2). [23]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of AFG3-like protein 2 (AFG3L2). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of AFG3-like protein 2 (AFG3L2). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of AFG3-like protein 2 (AFG3L2). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar ataxia type 28.JAMA Neurol. 2015 Jan;72(1):106-11. doi: 10.1001/jamaneurol.2014.1753.
2 Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010 Apr;42(4):313-21. doi: 10.1038/ng.544. Epub 2010 Mar 7.
3 A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015 Jan;47(1):39-46. doi: 10.1038/ng.3144. Epub 2014 Nov 17.
4 SCA28: Novel Mutation in the AFG3L2 Proteolytic Domain Causes a Mild Cerebellar Syndrome with Selective Type-1 Muscle Fiber Atrophy.Cerebellum. 2017 Feb;16(1):62-67. doi: 10.1007/s12311-016-0765-1.
5 Movement disorders in mitochondrial diseases.Rev Neurol (Paris). 2016 Aug-Sep;172(8-9):524-529. doi: 10.1016/j.neurol.2016.07.003. Epub 2016 Jul 28.
6 In Silico Investigation of Traditional Chinese Medicine for Potential Lead Compounds as SPG7 Inhibitors against Coronary Artery Disease.Molecules. 2016 May 5;21(5):588. doi: 10.3390/molecules21050588.
7 Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation.Hum Mutat. 2018 Dec;39(12):2060-2071. doi: 10.1002/humu.23658. Epub 2018 Oct 10.
8 Missense mutations in the AFG3L2 proteolytic domain account for ?1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat. 2010 Oct;31(10):1117-24. doi: 10.1002/humu.21342.
9 Spinocerebellar Ataxia Type 28-Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2.Cerebellum. 2019 Aug;18(4):817-822. doi: 10.1007/s12311-019-01036-2.
10 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
11 A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28.J Mol Neurosci. 2014 Apr;52(4):493-6. doi: 10.1007/s12031-013-0187-1. Epub 2013 Nov 29.
12 Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28.Neurology. 2014 Jun 10;82(23):2092-100. doi: 10.1212/WNL.0000000000000491. Epub 2014 May 9.
13 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
14 Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia.J Cell Biol. 2003 Nov 24;163(4):777-87. doi: 10.1083/jcb.200304112. Epub 2003 Nov 17.
15 Recessive AFG3L2 Mutation Causes Progressive Microcephaly, Early Onset Seizures, Spasticity, and Basal Ganglia Involvement.Pediatr Neurol. 2017 Jun;71:24-28. doi: 10.1016/j.pediatrneurol.2017.03.019. Epub 2017 Apr 5.
16 Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet. 2011 Oct;7(10):e1002325. doi: 10.1371/journal.pgen.1002325. Epub 2011 Oct 13.
17 Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity.Neurobiol Dis. 2019 Apr;124:14-28. doi: 10.1016/j.nbd.2018.10.018. Epub 2018 Oct 30.
18 m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.Cell Res. 2018 Mar;28(3):296-306. doi: 10.1038/cr.2018.17. Epub 2018 Feb 16.
19 SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2.Brain. 2006 Jan;129(Pt 1):235-42. doi: 10.1093/brain/awh651. Epub 2005 Oct 26.
20 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
21 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
22 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
25 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.