General Information of Disease (ID: DISHWE0K)

Disease Name Dentatorubral-pallidoluysian atrophy
Synonyms
dentatorubral pallidoluysian atrophy; myoclonic epilepsy with choreoathetosis; Naito Oyanagi disease; NOD; ataxia, chorea, seizures, and dementia; DRPLA; haw River syndrome; dentatorubral-pallidoluysian atrophy; Dentatorubropallidoluysian atrophy; Naito-Oyanagi disease
Definition
Dentatorubral pallidoluysian atrophy (DRPLA) is a rare subtype of type I autosomal dominant cerebellar ataxia (ADCA type I). It is characterized by involuntary movements, ataxia, epilepsy, mental disorders, cognitive decline and prominent anticipation.
Disease Hierarchy
DISTHNDH: Autosomal dominant cerebellar ataxia type IV
DIS6BW88: Huntington disease-like syndrome
DISHWE0K: Dentatorubral-pallidoluysian atrophy
Disease Identifiers
MONDO ID
MONDO_0007435
MESH ID
D020191
UMLS CUI
C0751781
OMIM ID
125370
MedGen ID
155630
Orphanet ID
101
SNOMED CT ID
68116008

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 10 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ATXN3 TT6A17J Limited Genetic Variation [1]
CACNA1A TTX4QDJ Limited Genetic Variation [1]
ADORA1 TTK25J1 Strong Altered Expression [2]
CLN6 TTJCOQ7 Strong Biomarker [3]
FGF14 TTKJX1V Strong Biomarker [4]
HTT TTIWZ0O Strong Altered Expression [5]
KCNC1 TTVUWHQ Strong Biomarker [3]
NAGLU TTDM6HZ Strong Altered Expression [6]
PRKCG TTRFOXJ Strong Biomarker [7]
PRNP TTY5F9C Strong Biomarker [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DTT(s)
This Disease Is Related to 1 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
FXN DEXVHDB Strong Biomarker [8]
------------------------------------------------------------------------------------
This Disease Is Related to 24 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ATXN1 OTQF0HNR Limited Genetic Variation [1]
LY6E OTMG16BZ Limited Genetic Variation [9]
TBP OT6C0S52 Limited Biomarker [10]
AFG3L2 OTRPMAUX Strong Biomarker [3]
ATN1 OTNZFLKY Strong Autosomal dominant [11]
ATXN10 OTKRDUNN Strong Genetic Variation [1]
BEAN1 OT0WLH27 Strong Genetic Variation [12]
EPM2A OTJU4IAG Strong Biomarker [3]
JPH3 OTHTJO2I Strong Biomarker [13]
NBAS OTW9IBRI Strong Altered Expression [6]
NEU1 OTH9BY8Y Strong Biomarker [3]
NHLRC1 OTRQ0A4W Strong Biomarker [3]
PLEKHG4 OT3RBPFL Strong Biomarker [14]
PPP2R2B OTSFVC82 Strong Biomarker [15]
RSC1A1 OT54EM29 Strong Biomarker [16]
SACS OTZGXQ8A Strong Biomarker [3]
SCN7A OTK05PXY Strong Altered Expression [6]
SERPINI1 OTUJHIJW Strong Biomarker [3]
SPTBN2 OTDMJ75N Strong Biomarker [14]
TAF4 OTPIRFEF Strong Biomarker [17]
TBC1D24 OTKZUSMD Strong Biomarker [3]
TK2 OTS1V4XB Strong Genetic Variation [12]
TSC1 OTFF4YZ7 Strong Biomarker [18]
NBR1 OTVRL7J9 Definitive Genetic Variation [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 DOT(s)

References

1 Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent.J Hum Genet. 2016 Mar;61(3):215-22. doi: 10.1038/jhg.2015.131. Epub 2015 Nov 5.
2 Diminished adenosine A1 receptor expression in pancreatic -cells may contribute to the pathology of type 1 diabetes.Diabetes. 2013 Dec;62(12):4208-19. doi: 10.2337/db13-0614.
3 A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015 Jan;47(1):39-46. doi: 10.1038/ng.3144. Epub 2014 Nov 17.
4 Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family.Neurosci Lett. 2010 Aug 2;479(3):321-6. doi: 10.1016/j.neulet.2010.05.089.
5 Targeting several CAG expansion diseases by a single antisense oligonucleotide.PLoS One. 2011;6(9):e24308. doi: 10.1371/journal.pone.0024308. Epub 2011 Sep 1.
6 Assessment and prediction of acute kidney injury in patients with decompensated cirrhosis with serum cystatin C and urine N-acetyl--D-glucosaminidase.J Gastroenterol Hepatol. 2019 Jan;34(1):234-240. doi: 10.1111/jgh.14387. Epub 2018 Aug 21.
7 Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics.Orphanet J Rare Dis. 2011 May 28;6:33. doi: 10.1186/1750-1172-6-33.
8 Investigating PUM1 mutations in a Taiwanese cohort with cerebellar ataxia.Parkinsonism Relat Disord. 2019 Sep;66:220-223. doi: 10.1016/j.parkreldis.2019.08.004. Epub 2019 Aug 7.
9 Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal.Eur J Neurol. 2010 Jan;17(1):124-8. doi: 10.1111/j.1468-1331.2009.02757.x. Epub 2009 Jul 29.
10 Pathogenesis of SCA3 and implications for other polyglutamine diseases.Neurobiol Dis. 2020 Feb;134:104635. doi: 10.1016/j.nbd.2019.104635. Epub 2019 Oct 24.
11 Genetic analysis of a dentatorubral-pallidoluysian atrophy family: relevance to apparent sporadic cases. Intern Med. 1999 Mar;38(3):287-9. doi: 10.2169/internalmedicine.38.287.
12 SCA31 is rare in the Chinese population on Taiwan.Neurobiol Aging. 2012 Feb;33(2):426.e23-4. doi: 10.1016/j.neurobiolaging.2010.10.012. Epub 2010 Dec 15.
13 Huntington disease-like 2 (HDL2) in Venezuela: frequency and ethnic origin.J Hum Genet. 2013 Jan;58(1):3-6. doi: 10.1038/jhg.2012.111. Epub 2012 Sep 13.
14 Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients.Neurology. 1996 Jan;46(1):214-8. doi: 10.1212/wnl.46.1.214.
15 Genetic screening of Greek patients with Huntingtons disease phenocopies identifies an SCA8 expansion.J Neurol. 2012 Sep;259(9):1874-8. doi: 10.1007/s00415-012-6430-9.
16 Terlipressin for the treatment of hepatorenal syndrome: an overview of current evidence.Curr Med Res Opin. 2019 May;35(5):859-868. doi: 10.1080/03007995.2018.1552575. Epub 2019 Jan 4.
17 Pathology of CAG repeat diseases.Neuropathology. 2000 Dec;20(4):319-25. doi: 10.1046/j.1440-1789.2000.00354.x.
18 The natural history and treatment of epilepsy in a murine model of tuberous sclerosis.Epilepsia. 2007 Aug;48(8):1470-6. doi: 10.1111/j.1528-1167.2007.01110.x. Epub 2007 May 1.
19 Diverse mechanisms of autophagy dysregulation and their therapeutic implications: does the shoe fit?.Autophagy. 2019 Feb;15(2):368-371. doi: 10.1080/15548627.2018.1509609. Epub 2018 Sep 13.