General Information of Drug Off-Target (DOT) (ID: OTSUMQDH)

DOT Name CD59 glycoprotein (CD59)
Synonyms
1F5 antigen; 20 kDa homologous restriction factor; HRF-20; HRF20; MAC-inhibitory protein; MAC-IP; MEM43 antigen; Membrane attack complex inhibition factor; MACIF; Membrane inhibitor of reactive lysis; MIRL; Protectin; CD antigen CD59
Gene Name CD59
Related Disease
Primary CD59 deficiency ( )
UniProt ID
CD59_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CDQ; 1CDR; 1CDS; 1ERG; 1ERH; 2J8B; 2OFS; 2UWR; 2UX2; 4BIK; 5IMT; 5IMY; 6ZD0; 8B0F; 8B0G; 8B0H
Pfam ID
PF00021
Sequence
MGIQGGSVLFGLLLVLAVFCHSGHSLQCYNCPNPTADCKTAVNCSSDFDACLITKAGLQV
YNKCWKFEHCNFNDVTTRLRENELTYYCCKKDLCNFNEQLENGGTSLSEKTVLLLVTPFL
AAAWSLHP
Function
Potent inhibitor of the complement membrane attack complex (MAC) action. Acts by binding to the C8 and/or C9 complements of the assembling MAC, thereby preventing incorporation of the multiple copies of C9 required for complete formation of the osmolytic pore. This inhibitor appears to be species-specific. Involved in signal transduction for T-cell activation complexed to a protein tyrosine kinase.; The soluble form from urine retains its specific complement binding activity, but exhibits greatly reduced ability to inhibit MAC assembly on cell membranes.
KEGG Pathway
Complement and coagulation cascades (hsa04610 )
Hematopoietic cell lineage (hsa04640 )
Reactome Pathway
Cargo concentration in the ER (R-HSA-5694530 )
Neutrophil degranulation (R-HSA-6798695 )
COPI-mediated anterograde transport (R-HSA-6807878 )
Regulation of Complement cascade (R-HSA-977606 )
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Primary CD59 deficiency DISQH167 Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of CD59 glycoprotein (CD59). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of CD59 glycoprotein (CD59). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of CD59 glycoprotein (CD59). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of CD59 glycoprotein (CD59). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of CD59 glycoprotein (CD59). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of CD59 glycoprotein (CD59). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of CD59 glycoprotein (CD59). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of CD59 glycoprotein (CD59). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of CD59 glycoprotein (CD59). [11]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of CD59 glycoprotein (CD59). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the mutagenesis of CD59 glycoprotein (CD59). [13]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of CD59 glycoprotein (CD59). [14]
Testosterone DM7HUNW Approved Testosterone increases the expression of CD59 glycoprotein (CD59). [14]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of CD59 glycoprotein (CD59). [15]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of CD59 glycoprotein (CD59). [16]
Nicotine DMWX5CO Approved Nicotine increases the expression of CD59 glycoprotein (CD59). [17]
Mitomycin DMH0ZJE Approved Mitomycin increases the mutagenesis of CD59 glycoprotein (CD59). [18]
Colchicine DM2POTE Approved Colchicine increases the mutagenesis of CD59 glycoprotein (CD59). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of CD59 glycoprotein (CD59). [17]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of CD59 glycoprotein (CD59). [19]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of CD59 glycoprotein (CD59). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of CD59 glycoprotein (CD59). [21]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of CD59 glycoprotein (CD59). [22]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of CD59 glycoprotein (CD59). [23]
Lead acetate DML0GZ2 Investigative Lead acetate increases the mutagenesis of CD59 glycoprotein (CD59). [18]
Buthionine sulfoximine DMJ46CB Investigative Buthionine sulfoximine increases the mutagenesis of CD59 glycoprotein (CD59). [24]
Ethidium DMMEQUR Investigative Ethidium increases the mutagenesis of CD59 glycoprotein (CD59). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of CD59 glycoprotein (CD59). [10]
------------------------------------------------------------------------------------

References

1 Paroxysmal nocturnal hemoglobinuria due to hereditary nucleotide deletion in the HRF20 (CD59) gene. Eur J Immunol. 1992 Oct;22(10):2669-73. doi: 10.1002/eji.1830221029.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol Sci. 2014 Aug 1;140(2):307-14. doi: 10.1093/toxsci/kfu078. Epub 2014 May 5.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species. Environ Health Perspect. 2002 Oct;110(10):1003-8. doi: 10.1289/ehp.021101003.
14 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
15 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
16 Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells. Front Physiol. 2016 Nov 24;7:559. doi: 10.3389/fphys.2016.00559. eCollection 2016.
17 Effects of tobacco compounds on gene expression in fetal lung fibroblasts. Environ Toxicol. 2008 Aug;23(4):423-34.
18 Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay. Mutat Res. 2006 Dec 1;602(1-2):14-25. doi: 10.1016/j.mrfmmm.2006.07.009. Epub 2006 Oct 11.
19 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
20 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
21 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
23 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
24 [CD59 mutation and DNA oxidative damage in A(L) cells induced by crocidolite fibers]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2004 Feb;22(1):43-6.