General Information of Drug Off-Target (DOT) (ID: OTT5KPUB)

DOT Name Transketolase (TKT)
Synonyms TK; EC 2.2.1.1
Gene Name TKT
Related Disease
Transketolase deficiency ( )
UniProt ID
TKT_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3MOS; 3OOY; 4KXU; 4KXV; 4KXW; 4KXX; 4KXY; 6HA3; 6HAD; 6RJB
EC Number
2.2.1.1
Pfam ID
PF02779 ; PF02780 ; PF00456
Sequence
MESYHKPDQQKLQALKDTANRLRISSIQATTAAGSGHPTSCCSAAEIMAVLFFHTMRYKS
QDPRNPHNDRFVLSKGHAAPILYAVWAEAGFLAEAELLNLRKISSDLDGHPVPKQAFTDV
ATGSLGQGLGAACGMAYTGKYFDKASYRVYCLLGDGELSEGSVWEAMAFASIYKLDNLVA
ILDINRLGQSDPAPLQHQMDIYQKRCEAFGWHAIIVDGHSVEELCKAFGQAKHQPTAIIA
KTFKGRGITGVEDKESWHGKPLPKNMAEQIIQEIYSQIQSKKKILATPPQEDAPSVDIAN
IRMPSLPSYKVGDKIATRKAYGQALAKLGHASDRIIALDGDTKNSTFSEIFKKEHPDRFI
ECYIAEQNMVSIAVGCATRNRTVPFCSTFAAFFTRAFDQIRMAAISESNINLCGSHCGVS
IGEDGPSQMALEDLAMFRSVPTSTVFYPSDGVATEKAVELAANTKGICFIRTSRPENAII
YNNNEDFQVGQAKVVLKSKDDQVTVIGAGVTLHEALAAAELLKKEKINIRVLDPFTIKPL
DRKLILDSARATKGRILTVEDHYYEGGIGEAVSSAVVGEPGITVTHLAVNRVPRSGKPAE
LLKMFGIDRDAIAQAVRGLITKA
Function Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
KEGG Pathway
Pentose phosphate pathway (hsa00030 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of amino acids (hsa01230 )
Reactome Pathway
Pentose phosphate pathway (R-HSA-71336 )
NFE2L2 regulates pentose phosphate pathway genes (R-HSA-9818028 )
Insulin effects increased synthesis of Xylulose-5-Phosphate (R-HSA-163754 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Transketolase deficiency DISDJL64 Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Nitrofurazone DMSM2KE Approved Transketolase (TKT) increases the Vitamin B complex deficiency ADR of Nitrofurazone. [25]
Tolazamide DMIHRNA Approved Transketolase (TKT) increases the Encephalopathy ADR of Tolazamide. [25]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Transketolase (TKT). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transketolase (TKT). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transketolase (TKT). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Transketolase (TKT). [5]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Transketolase (TKT). [6]
Ivermectin DMDBX5F Approved Ivermectin affects the expression of Transketolase (TKT). [7]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Transketolase (TKT). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Transketolase (TKT). [9]
Selenium DM25CGV Approved Selenium increases the expression of Transketolase (TKT). [10]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Transketolase (TKT). [11]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Transketolase (TKT). [12]
Cocaine DMSOX7I Approved Cocaine affects the expression of Transketolase (TKT). [13]
Clavulanate DM2FGRT Approved Clavulanate increases the expression of Transketolase (TKT). [14]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Transketolase (TKT). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Transketolase (TKT). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Transketolase (TKT). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Transketolase (TKT). [21]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Transketolase (TKT). [22]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Transketolase (TKT). [23]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of Transketolase (TKT). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB increases the metabolism of Transketolase (TKT). [16]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Transketolase (TKT). [17]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Transketolase (TKT). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Transketolase (TKT). [20]
------------------------------------------------------------------------------------

References

1 Mutations in TKT Are the Cause of a Syndrome Including Short Stature, Developmental Delay, and Congenital Heart Defects. Am J Hum Genet. 2016 Jun 2;98(6):1235-1242. doi: 10.1016/j.ajhg.2016.03.030.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics. Toxicol Appl Pharmacol. 2010 Jan 15;242(2):126-35. doi: 10.1016/j.taap.2009.09.016. Epub 2009 Oct 7.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
12 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
13 Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology. 2009 Jul;57(1):41-8. doi: 10.1016/j.neuropharm.2009.04.005. Epub 2009 Apr 22.
14 Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol. 2021 Dec;158:112664. doi: 10.1016/j.fct.2021.112664. Epub 2021 Nov 9.
15 Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog. 2006 Oct;45(10):752-63.
16 Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci. 2018 Apr 1;162(2):429-438. doi: 10.1093/toxsci/kfx265.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
23 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
24 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
25 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.