General Information of Drug Off-Target (DOT) (ID: OTU20K6L)

DOT Name Eukaryotic translation initiation factor 3 subunit F (EIF3F)
Synonyms eIF3f; Deubiquitinating enzyme eIF3f; EC 3.4.19.12; Eukaryotic translation initiation factor 3 subunit 5; eIF-3-epsilon; eIF3 p47
Gene Name EIF3F
Related Disease
Syndromic intellectual disability ( )
Cervical cancer ( )
Cervical carcinoma ( )
Estrogen-receptor positive breast cancer ( )
Intellectual disability ( )
Lung adenocarcinoma ( )
Melanoma ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Pancreatic cancer ( )
Pancreatic tumour ( )
Schizophrenia ( )
Sensorineural hearing loss disorder ( )
Advanced cancer ( )
Intellectual developmental disorder, autosomal recessive 67 ( )
UniProt ID
EIF3F_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3J8B; 3J8C; 6YBD; 6ZMW; 6ZON; 6ZP4; 6ZVJ; 7A09; 7QP6; 7QP7; 8PPL
EC Number
3.4.19.12
Pfam ID
PF01398 ; PF13012
Sequence
MATPAVPVSAPPATPTPVPAAAPASVPAPTPAPAAAPVPAAAPASSSDPAAAAAATAAPG
QTPASAQAPAQTPAPALPGPALPGPFPGGRVVRLHPVILASIVDSYERRNEGAARVIGTL
LGTVDKHSVEVTNCFSVPHNESEDEVAVDMEFAKNMYELHKKVSPNELILGWYATGHDIT
EHSVLIHEYYSREAPNPIHLTVDTSLQNGRMSIKAYVSTLMGVPGRTMGVMFTPLTVKYA
YYDTERIGVDLIMKTCFSPNRVIGLSSDLQQVGGASARIQDALSTVLQYAEDVLSGKVSA
DNTVGRFLMSLVNQVPKIVPDDFETMLNSNINDLLMVTYLANLTQSQIALNEKLVNL
Function
Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression ; Deubiquitinates activated NOTCH1, promoting its nuclear import, thereby acting as a positive regulator of Notch signaling.
Reactome Pathway
Translation initiation complex formation (R-HSA-72649 )
Formation of a pool of free 40S subunits (R-HSA-72689 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

15 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Syndromic intellectual disability DISH7SDF Definitive Autosomal recessive [1]
Cervical cancer DISFSHPF Strong Altered Expression [2]
Cervical carcinoma DIST4S00 Strong Altered Expression [2]
Estrogen-receptor positive breast cancer DIS1H502 Strong Altered Expression [3]
Intellectual disability DISMBNXP Strong Biomarker [4]
Lung adenocarcinoma DISD51WR Strong Biomarker [5]
Melanoma DIS1RRCY Strong Genetic Variation [6]
Neoplasm DISZKGEW Strong Altered Expression [2]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [7]
Pancreatic cancer DISJC981 Strong Posttranslational Modification [8]
Pancreatic tumour DIS3U0LK Strong Genetic Variation [8]
Schizophrenia DISSRV2N Strong Genetic Variation [9]
Sensorineural hearing loss disorder DISJV45Z Strong Biomarker [4]
Advanced cancer DISAT1Z9 moderate Biomarker [6]
Intellectual developmental disorder, autosomal recessive 67 DIS4AQ1M Moderate Autosomal recessive [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [12]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [13]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [14]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [15]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [18]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [20]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin affects the binding of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [17]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [21]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Eukaryotic translation initiation factor 3 subunit F (EIF3F). [22]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells.Oncotarget. 2016 Apr 5;7(14):18541-57. doi: 10.18632/oncotarget.8105.
3 Estrogen receptor promotes protein synthesis by fine-tuning the expression of the eukaryotic translation initiation factor 3 subunit f (eIF3f).J Biol Chem. 2019 Feb 15;294(7):2267-2278. doi: 10.1074/jbc.RA118.004383. Epub 2018 Dec 20.
4 Quantifying the contribution of recessive coding variation to developmental disorders. Science. 2018 Dec 7;362(6419):1161-1164. doi: 10.1126/science.aar6731. Epub 2018 Nov 8.
5 Nuclear control of lung cancer cells migration, invasion and bioenergetics by eukaryotic translation initiation factor 3F.Oncogene. 2020 Jan;39(3):617-636. doi: 10.1038/s41388-019-1009-x. Epub 2019 Sep 16.
6 Loss of the eukaryotic initiation factor 3f in melanoma.Mol Carcinog. 2008 Oct;47(10):806-13. doi: 10.1002/mc.20436.
7 Identification of variations of gene expression of visceral adipose and renal tissue in type 2 diabetic rats using cDNA representational difference analysis.Chin Med J (Engl). 2003 Apr;116(4):529-33.
8 Loss of the eukaryotic initiation factor 3f in pancreatic cancer.Mol Carcinog. 2008 Mar;47(3):235-44. doi: 10.1002/mc.20379.
9 Genome-wide association study of paliperidone efficacy.Pharmacogenet Genomics. 2017 Jan;27(1):7-18. doi: 10.1097/FPC.0000000000000250.
10 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
13 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
14 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
15 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Biotinylated quercetin as an intrinsic photoaffinity proteomics probe for the identification of quercetin target proteins. Bioorg Med Chem. 2011 Aug 15;19(16):4710-20. doi: 10.1016/j.bmc.2011.07.005. Epub 2011 Jul 13.
18 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
19 Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells. Environ Toxicol. 2014 Apr;29(4):478-85. doi: 10.1002/tox.21775. Epub 2012 Apr 7.
20 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.