General Information of Drug Off-Target (DOT) (ID: OTV232Y7)

DOT Name Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2)
Synonyms GPD-M; GPDH-M; EC 1.1.5.3; mitohondrial glycerophosphate dehydrogenase gene; mGDH; mtGPD
Gene Name GPD2
Related Disease
Advanced cancer ( )
Citrin deficiency ( )
Citrullinemia type II ( )
Esophageal squamous cell carcinoma ( )
Glioma ( )
Insulinoma ( )
Intrahepatic cholestasis ( )
Language disorder ( )
Motion sickness ( )
Neonatal intrahepatic cholestasis due to citrin deficiency ( )
Neoplasm ( )
Osteoporosis ( )
Prostate neoplasm ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Intellectual disability ( )
Methylmalonic acidemia ( )
Myopia ( )
Obsolete diabetes mellitus, noninsulin-dependent ( )
UniProt ID
GPDM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.1.5.3
Pfam ID
PF01266 ; PF16901 ; PF13499
Sequence
MAFQKAVKGTILVGGGALATVLGLSQFAHYRRKQMNLAYVKAADCISEPVNREPPSREAQ
LLTLQNTSEFDILVIGGGATGSGCALDAVTRGLKTALVERDDFSSGTSSRSTKLIHGGVR
YLQKAIMKLDIEQYRMVKEALHERANLLEIAPHLSAPLPIMLPVYKWWQLPYYWVGIKLY
DLVAGSNCLKSSYVLSKSRALEHFPMLQKDKLVGAIVYYDGQHNDARMNLAIALTAARYG
AATANYMEVVSLLKKTDPQTGKVRVSGARCKDVLTGQEFDVRAKCVINATGPFTDSVRKM
DDKDAAAICQPSAGVHIVMPGYYSPESMGLLDPATSDGRVIFFLPWQKMTIAGTTDTPTD
VTHHPIPSEEDINFILNEVRNYLSCDVEVRRGDVLAAWSGIRPLVTDPKSADTQSISRNH
VVDISESGLITIAGGKWTTYRSMAEDTINAAVKTHNLKAGPSRTVGLFLQGGKDWSPTLY
IRLVQDYGLESEVAQHLAATYGDKAFEVAKMASVTGKRWPIVGVRLVSEFPYIEAEVKYG
IKEYACTAVDMISRRTRLAFLNVQAAEEALPRIVELMGRELNWDDYKKQEQLETARKFLY
YEMGYKSRSEQLTDRSEISLLPSDIDRYKKRFHKFDADQKGFITIVDVQRVLESINVQMD
ENTLHEILNEVDLNKNGQVELNEFLQLMSAIQKGRVSGSRLAILMKTAEENLDRRVPIPV
DRSCGGL
Function Calcium-responsive mitochondrial glycerol-3-phosphate dehydrogenase which seems to be a key component of the pancreatic beta-cell glucose-sensing device.
KEGG Pathway
Glycerophospholipid metabolism (hsa00564 )
Reactome Pathway
Triglyceride catabolism (R-HSA-163560 )
Synthesis of PA (R-HSA-1483166 )
BioCyc Pathway
MetaCyc:HS03841-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Citrin deficiency DISIJZ2R Strong Biomarker [2]
Citrullinemia type II DIS2UURN Strong Biomarker [2]
Esophageal squamous cell carcinoma DIS5N2GV Strong Genetic Variation [3]
Glioma DIS5RPEH Strong Biomarker [4]
Insulinoma DISIU1JS Strong Biomarker [5]
Intrahepatic cholestasis DISHITDZ Strong Biomarker [2]
Language disorder DISTLKP7 Strong Genetic Variation [6]
Motion sickness DISZ2WZW Strong Genetic Variation [7]
Neonatal intrahepatic cholestasis due to citrin deficiency DIS8XETO Strong Genetic Variation [2]
Neoplasm DISZKGEW Strong Altered Expression [8]
Osteoporosis DISF2JE0 Strong Biomarker [9]
Prostate neoplasm DISHDKGQ Strong Altered Expression [10]
Thyroid cancer DIS3VLDH Disputed Biomarker [8]
Thyroid gland carcinoma DISMNGZ0 Disputed Biomarker [8]
Thyroid tumor DISLVKMD Disputed Biomarker [8]
Intellectual disability DISMBNXP Limited Genetic Variation [11]
Methylmalonic acidemia DISHY8VB Limited Biomarker [12]
Myopia DISK5S60 Limited Genetic Variation [13]
Obsolete diabetes mellitus, noninsulin-dependent DISS46MZ No Known Autosomal dominant [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [15]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [18]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [16]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [17]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [19]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [20]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [21]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [22]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [23]
Clozapine DMFC71L Approved Clozapine decreases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [24]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [27]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2). [25]
------------------------------------------------------------------------------------

References

1 Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells.Mol Ther Nucleic Acids. 2019 Dec 6;18:938-953. doi: 10.1016/j.omtn.2019.10.016. Epub 2019 Oct 24.
2 Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.Mol Genet Metab. 2012 Nov;107(3):322-9. doi: 10.1016/j.ymgme.2012.07.021. Epub 2012 Aug 2.
3 A Novel Clinical Six-Flavoprotein-Gene Signature Predicts Prognosis in Esophageal Squamous Cell Carcinoma.Biomed Res Int. 2019 Oct 30;2019:3869825. doi: 10.1155/2019/3869825. eCollection 2019.
4 Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1(R132H)-Induced Metabolic Liabilities.Cancer Res. 2018 Jan 1;78(1):36-50. doi: 10.1158/0008-5472.CAN-17-1352. Epub 2017 Nov 2.
5 Molecular cloning of human mitochondrial glycerophosphate dehydrogenase gene: genomic structure, chromosomal localization, and existence of a pseudogene.Biochem Biophys Res Commun. 1996 Jun 25;223(3):481-6. doi: 10.1006/bbrc.1996.0920.
6 Haploinsufficiency of NR4A2 is associated with a neurodevelopmental phenotype with prominent language impairment.Am J Med Genet A. 2017 Aug;173(8):2231-2234. doi: 10.1002/ajmg.a.38288. Epub 2017 May 24.
7 Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis.Hum Mol Genet. 2015 May 1;24(9):2700-8. doi: 10.1093/hmg/ddv028. Epub 2015 Jan 26.
8 Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer In Vitro and In Vivo.Clin Cancer Res. 2018 Aug 15;24(16):4030-4043. doi: 10.1158/1078-0432.CCR-17-3167. Epub 2018 Apr 24.
9 Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density.Proteomics. 2008 Oct;8(20):4259-72. doi: 10.1002/pmic.200700480.
10 Increased expression of mitochondrial glycerophosphate dehydrogenase and antioxidant enzymes in prostate cancer cell lines/cancer.Free Radic Res. 2007 Oct;41(10):1116-24. doi: 10.1080/10715760701579314.
11 Intellectual disability and hemizygous GPD2 mutation.Am J Med Genet A. 2013 May;161A(5):1044-50. doi: 10.1002/ajmg.a.35873. Epub 2013 Mar 29.
12 Quantitative analysis of mitochondrial protein expression in methylmalonic acidemia by two-dimensional difference gel electrophoresis.J Proteome Res. 2006 Jul;5(7):1602-10. doi: 10.1021/pr050481r.
13 Detection and interpretation of shared genetic influences on 42 human traits.Nat Genet. 2016 Jul;48(7):709-17. doi: 10.1038/ng.3570. Epub 2016 May 16.
14 Mutation in the calcium-binding domain of the mitochondrial glycerophosphate dehydrogenase gene in a family of diabetic subjects. Biochem Biophys Res Commun. 1997 Feb 24;231(3):570-2. doi: 10.1006/bbrc.1997.6147.
15 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
16 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
17 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
18 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
19 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
20 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
21 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun. 2001 Jan 26;280(3):664-74. doi: 10.1006/bbrc.2000.4216.
24 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
25 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
26 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
27 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
28 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.