General Information of Drug Off-Target (DOT) (ID: OTXHN86R)

DOT Name Interleukin-11 (IL11)
Synonyms IL-11; Adipogenesis inhibitory factor; AGIF; Oprelvekin
Gene Name IL11
Related Disease
Craniosynostosis and dental anomalies ( )
UniProt ID
IL11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4MHL; 6O4O; 8DPS; 8DPT; 8DPU; 8DPV; 8DPW
Pfam ID
PF07400
Sequence
MNCVCRLVLVVLSLWPDTAVAPGPPPGPPRVSPDPRAELDSTVLLTRSLLADTRQLAAQL
RDKFPADGDHNLDSLPTLAMSAGALGALQLPGVLTRLRADLLSYLRHVQWLRRAGGSSLK
TLEPELGTLQARLDRLLRRLQLLMSRLALPQPPPDPPAPPLAPPSSAWGGIRAAHAILGG
LHLTLDWAVRGLLLLKTRL
Function
Cytokine that stimulates the proliferation of hematopoietic stem cells and megakaryocyte progenitor cells and induces megakaryocyte maturation resulting in increased platelet production. Also promotes the proliferation of hepatocytes in response to liver damage. Binding to its receptor formed by IL6ST and IL11RA activates a signaling cascade that promotes cell proliferation. Signaling leads to the activation of intracellular protein kinases and the phosphorylation of STAT3. The interaction with the membrane-bound IL11RA and IL6ST stimulates 'classic signaling', whereas the binding of IL11 and soluble IL11RA to IL6ST stimulates 'trans-signaling'.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
JAK-STAT sig.ling pathway (hsa04630 )
Hematopoietic cell lineage (hsa04640 )
Rheumatoid arthritis (hsa05323 )
Reactome Pathway
IL-6-type cytokine receptor ligand interactions (R-HSA-6788467 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Craniosynostosis and dental anomalies DISNSW0F Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Interleukin-11 (IL11). [2]
------------------------------------------------------------------------------------
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Interleukin-11 (IL11). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Interleukin-11 (IL11). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Interleukin-11 (IL11). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Interleukin-11 (IL11). [6]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Interleukin-11 (IL11). [7]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Interleukin-11 (IL11). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Interleukin-11 (IL11). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Interleukin-11 (IL11). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Interleukin-11 (IL11). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Interleukin-11 (IL11). [12]
Triclosan DMZUR4N Approved Triclosan increases the expression of Interleukin-11 (IL11). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Interleukin-11 (IL11). [14]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Interleukin-11 (IL11). [15]
Marinol DM70IK5 Approved Marinol decreases the expression of Interleukin-11 (IL11). [16]
Menadione DMSJDTY Approved Menadione affects the expression of Interleukin-11 (IL11). [17]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Interleukin-11 (IL11). [18]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Interleukin-11 (IL11). [19]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Interleukin-11 (IL11). [20]
Ethanol DMDRQZU Approved Ethanol increases the expression of Interleukin-11 (IL11). [21]
Malathion DMXZ84M Approved Malathion increases the expression of Interleukin-11 (IL11). [22]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Interleukin-11 (IL11). [23]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Interleukin-11 (IL11). [24]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Interleukin-11 (IL11). [25]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Interleukin-11 (IL11). [26]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Interleukin-11 (IL11). [27]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Interleukin-11 (IL11). [28]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Interleukin-11 (IL11). [29]
JWH-015 DMGTSCP Patented JWH-015 increases the expression of Interleukin-11 (IL11). [30]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Interleukin-11 (IL11). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Interleukin-11 (IL11). [32]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Interleukin-11 (IL11). [33]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Interleukin-11 (IL11). [34]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Interleukin-11 (IL11). [35]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Interleukin-11 (IL11). [36]
Forskolin DM6ITNG Investigative Forskolin increases the expression of Interleukin-11 (IL11). [26]
crotylaldehyde DMTWRQI Investigative crotylaldehyde increases the expression of Interleukin-11 (IL11). [37]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid increases the expression of Interleukin-11 (IL11). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)

References

1 Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet. 2011 Jul 15;89(1):67-81. doi: 10.1016/j.ajhg.2011.05.024.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell. 2004 Mar;15(3):1262-72. doi: 10.1091/mbc.e03-06-0360. Epub 2003 Dec 29.
8 Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. Sci Total Environ. 2010 Jan 15;408(4):760-7. doi: 10.1016/j.scitotenv.2009.11.016. Epub 2009 Dec 4.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Darinaparsin: solid tumor hypoxic cytotoxin and radiosensitizer. Clin Cancer Res. 2012 Jun 15;18(12):3366-76.
12 Unique signatures of stress-induced senescent human astrocytes. Exp Neurol. 2020 Dec;334:113466. doi: 10.1016/j.expneurol.2020.113466. Epub 2020 Sep 17.
13 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
14 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
15 Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells. Eur J Pharmacol. 2014 Jun 5;732:60-7.
16 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
17 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
18 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
19 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
20 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
21 Heme oxygenase-1 and interleukin-11 are overexpressed in stress-induced premature senescence of human WI-38 fibroblasts induced by tert-butylhydroperoxide and ethanol. Biogerontology. 2007 Aug;8(4):409-22. doi: 10.1007/s10522-007-9084-8. Epub 2007 Feb 13.
22 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
23 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
24 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
25 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
26 MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology. 2012 Feb 6;292(1):13-22. doi: 10.1016/j.tox.2011.11.011. Epub 2011 Nov 28.
27 Induction of fibroblast growth factor-9 and interleukin-1alpha gene expression by motorcycle exhaust particulate extracts and benzo(a)pyrene in human lung adenocarcinoma cells. Toxicol Sci. 2005 Oct;87(2):483-96. doi: 10.1093/toxsci/kfi251. Epub 2005 Jul 7.
28 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
29 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
30 Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC). Front Microbiol. 2015 Dec 22;6:1452. doi: 10.3389/fmicb.2015.01452. eCollection 2015.
31 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
33 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.
34 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
35 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
36 Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust. Clin Exp Otorhinolaryngol. 2015 Dec;8(4):345-53. doi: 10.3342/ceo.2015.8.4.345. Epub 2015 Nov 10.
37 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.