General Information of Disease (ID: DIS6J405)

Disease Name Craniosynostosis
Synonyms CSO; craniosynostosis syndrome; premature closure of cranial sutures
Definition
Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome.
Disease Hierarchy
DISYKSRF: Genetic disease
DISXGMZW: Synostosis
DIS6J405: Craniosynostosis
Disease Identifiers
MONDO ID
MONDO_0015469
MESH ID
D003398
UMLS CUI
C0010278
MedGen ID
1163
HPO ID
HP:0001363
Orphanet ID
1531
SNOMED CT ID
57219006

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 61 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
BMP2 TTP3IGX Limited Biomarker [1]
SMAD6 TTON5JB Limited Genetic Variation [2]
CAMP TTULOB6 moderate Altered Expression [3]
DEFB4A TTIVY12 moderate Biomarker [4]
FGF4 TTCEKVZ moderate Genetic Variation [5]
FGF8 TTIUF3J moderate Altered Expression [6]
GPC3 TTJTSX4 moderate Biomarker [7]
IL19 TT87RWS moderate Biomarker [8]
IL25 TTVMO5W moderate Biomarker [9]
LRP5 TT7VMG4 moderate Genetic Variation [10]
LYZ TTAOZBW moderate Altered Expression [11]
OSM TTIVXSE moderate Biomarker [12]
S100A12 TTQ4ESF moderate Biomarker [13]
S100A8 TT4AF6N moderate Biomarker [14]
SLC26A4 TT7X02I moderate Biomarker [15]
ALOX5AP TTDMBF5 Strong Biomarker [16]
ANK1 TTKFPMH Strong Biomarker [17]
AOAH TT2EJXQ Strong Genetic Variation [18]
ATP4A TTF1QVM Strong Biomarker [19]
ATR TT8ZYBQ Strong Altered Expression [20]
CASR TTBUYHA Strong Biomarker [21]
CD52 TTQT5S9 Strong Altered Expression [22]
CRLF2 TTRMZ0N Strong Altered Expression [23]
CYP11B1 TTIQUX7 Strong Altered Expression [24]
CYP26A1 TTD7Q0R Strong Genetic Variation [25]
CYSLTR1 TTGKOY9 Strong Biomarker [16]
DDX5 TTZKPVC Strong Biomarker [26]
DSG3 TTEO4P8 Strong Altered Expression [27]
FES TTLBY21 Strong Biomarker [28]
FGF14 TTKJX1V Strong Altered Expression [29]
FGFBP1 TTV1YFT Strong Altered Expression [30]
FLNA TTSTRZY Strong Genetic Variation [31]
GJB6 TTAU8SJ Strong Biomarker [32]
GRK5 TTTCXO0 Strong Biomarker [29]
IL11RA TTZPLJS Strong Genetic Variation [33]
IL13 TT0GVCH Strong Biomarker [34]
IL1RL2 TTUS18T Strong Altered Expression [35]
IL5 TTPREZD Strong Biomarker [36]
IRAK4 TTILUKB Strong Genetic Variation [37]
KAT6A TT6O1J0 Strong CausalMutation [38]
KCNQ5 TTWVL5Q Strong Genetic Variation [39]
KLK6 TTLPF4X Strong Biomarker [29]
MUC5AC TTEL90S Strong Biomarker [8]
NELL1 TT7H4BF Strong Altered Expression [40]
NPPC TTRK0B9 Strong Biomarker [41]
NR1I3 TTRANFM Strong Biomarker [21]
PGA5 TTKZ864 Strong Biomarker [42]
POR TTOQ9GZ Strong Biomarker [43]
POSTN TT8ALTZ Strong Biomarker [15]
PRKAR1A TTNAHEX Strong Biomarker [21]
PTGDR2 TTQDMX5 Strong Biomarker [44]
PTH2R TTEPJL5 Strong Genetic Variation [45]
RUNX2 TTD6SZ8 Strong Genetic Variation [46]
SCN4A TT84DRB Strong Genetic Variation [47]
SMO TT8J1S3 Strong Biomarker [48]
SPRY1 TT0PSN6 Strong Biomarker [49]
TLR9 TTSHG0T Strong Altered Expression [50]
TNFRSF17 TTZ3P4W Strong Biomarker [51]
TNFSF11 TT9E8HR Strong Biomarker [52]
TRPA1 TTELV3W Strong Biomarker [17]
EZH2 TT9MZCQ Definitive Biomarker [53]
------------------------------------------------------------------------------------
⏷ Show the Full List of 61 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ATP12A DT5NLZA Strong Biomarker [19]
SLC25A24 DTVAEDK Strong Genetic Variation [54]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
PTGDS DER3H9C moderate Altered Expression [55]
CYP26B1 DEZT8FM Strong Genetic Variation [56]
------------------------------------------------------------------------------------
This Disease Is Related to 94 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AXIN2 OTRMGQNU Limited Autosomal dominant [57]
EFNB1 OT7JJW8P Limited Genetic Variation [58]
MN1 OTVQR4R9 Limited Biomarker [59]
TCF12 OTZVONNU Limited Biomarker [60]
ALX4 OTNS9A29 moderate Biomarker [61]
CLC OTYMYR85 moderate Biomarker [62]
EFNA4 OTITKZQH moderate Genetic Variation [63]
FGF9 OT2SKDGM moderate Genetic Variation [64]
IFIH1 OTZA2AHA moderate Biomarker [4]
LAMB1 OT6J9LJR moderate Genetic Variation [65]
MUC5B OTPW6K5C moderate Altered Expression [66]
NOG OTGRHHPG moderate Biomarker [67]
RECQL4 OT59LSW7 moderate Altered Expression [68]
S100A7 OTJFVJRF moderate Altered Expression [13]
SHOC2 OTUNQ2CT moderate Genetic Variation [69]
SPINK5 OT61IIAO moderate Altered Expression [70]
ACSL3 OT3MWER1 Strong Genetic Variation [71]
ADAMDEC1 OTMT7ZMG Strong Altered Expression [72]
AHDC1 OTQ1VL2W Strong Genetic Variation [73]
ALX1 OTZVARA5 Strong Biomarker [61]
ALX3 OTXZ25PZ Strong Biomarker [61]
ANXA7 OTLMD0TK Strong Biomarker [74]
ARR3 OTRZ00CH Strong Biomarker [21]
B3GAT3 OTDSN5XF Strong Genetic Variation [75]
BBS9 OT23V9YF Strong Biomarker [76]
BCL11B OT8KKCVJ Strong Genetic Variation [77]
BCL2L12 OTS6IFZY Strong Biomarker [78]
BPIFA1 OTQFD2J5 Strong Biomarker [79]
CARTPT OTTE4V9S Strong Biomarker [80]
CCL25 OTLWJ8CJ Strong Altered Expression [81]
CCL26 OT2B7HR9 Strong Altered Expression [82]
CD180 OTITK5E6 Strong Altered Expression [83]
CD8A OTDWQJXK Strong Biomarker [84]
CDC45 OT6NNLOD Strong Biomarker [85]
COL17A1 OTID5AH2 Strong Biomarker [86]
CST1 OTE4I83Q Strong Biomarker [87]
CST8 OTT2FRCJ Strong Biomarker [88]
CST9 OT37U1C8 Strong Genetic Variation [65]
CSTA OT1K68KE Strong Altered Expression [70]
CXADR OT9ZP02A Strong Biomarker [21]
CXCL6 OTFTCQ4O Strong Biomarker [89]
DLX5 OTEEFBEU Strong Biomarker [90]
DNAH5 OTC21RUS Strong Genetic Variation [91]
DUSP4 OT6WAO12 Strong Biomarker [92]
FBN1 OTYCJT63 Strong Genetic Variation [93]
FGFRL1 OT8HZ3ZL Strong Genetic Variation [94]
FNDC3B OTBILGDR Strong Biomarker [95]
GATAD2B OTJL128N Strong Biomarker [26]
GFM1 OTUN4V3N Strong Biomarker [96]
GPC1 OTQKRSSV Strong Biomarker [97]
IFT122 OTSK3OAD Strong Biomarker [98]
IHH OT1DWGXC Strong Biomarker [99]
IL9R OTILCLXA Strong Altered Expression [100]
ITGA3 OTBCH21D Strong Altered Expression [30]
LMX1B OTM8145D Strong Genetic Variation [101]
LRPAP1 OT6DVD2Q Strong Biomarker [102]
MED13L OTSP1W0F Strong Genetic Variation [103]
MUC7 OTSTMP0X Strong Altered Expression [104]
MXD3 OT4U88UP Strong Altered Expression [105]
NUDT6 OTCS3NYZ Strong Biomarker [49]
OMP OT7JH0DY Strong Biomarker [106]
PARS2 OTMBBH7K Strong Genetic Variation [107]
PCDH1 OT7KDEL3 Strong Altered Expression [108]
PGA3 OT8EHCKQ Strong Biomarker [42]
PGA4 OTKDMPMN Strong Biomarker [42]
PHEX OTG7N3J7 Strong Genetic Variation [109]
PLA2G10 OTRZ2L5A Strong Altered Expression [110]
PLA2G2D OTU604XM Strong Altered Expression [110]
POLD3 OTEQEFQ2 Strong Biomarker [26]
PPP1R9B OTDCTHTT Strong Biomarker [111]
PRG2 OT0BCPQG Strong Altered Expression [112]
PRKRA OTUTVZZU Strong Altered Expression [113]
PRRX1 OTTZK5G8 Strong Genetic Variation [68]
RAB14 OTF1J0TB Strong Genetic Variation [114]
RASD1 OT2BAJHK Strong Biomarker [114]
RCAN1 OT1MVXC7 Strong Biomarker [115]
RSPRY1 OT9MVWO0 Strong Biomarker [116]
SCARA3 OT46I38Y Strong Genetic Variation [117]
SCGB3A2 OTB63PHR Strong Biomarker [118]
SFTPA1 OT87XL1U Strong Biomarker [119]
SFTPA2 OT6SFOMU Strong Genetic Variation [119]
SFTPB OTOHS07E Strong Altered Expression [120]
SIPA1 OTXY5RXC Strong Biomarker [119]
SMC1A OT9ZMRK9 Strong Genetic Variation [121]
SPG7 OT8OY9ST Strong Biomarker [21]
SPRR1B OTXNW3P6 Strong Biomarker [122]
SPRR2A OT62ZU6B Strong Altered Expression [122]
TAPBP OTL81AVZ Strong Biomarker [84]
TAS2R13 OTSTOX5G Strong Genetic Variation [123]
TAS2R20 OT0F5B8C Strong Genetic Variation [123]
TAS2R38 OTX5MM36 Strong Biomarker [124]
TFG OT2KJENI Strong Altered Expression [105]
TINAGL1 OTZZO56M Strong Biomarker [125]
TRIM13 OTQIUACB Strong Biomarker [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 94 DOT(s)

References

1 Confirmation of the role of pathogenic SMAD6 variants in bicuspid aortic valve-related aortopathy.Eur J Hum Genet. 2019 Jul;27(7):1044-1053. doi: 10.1038/s41431-019-0363-z. Epub 2019 Feb 22.
2 SMAD6 Genotype Predicts Neurodevelopment in Nonsyndromic Craniosynostosis.Plast Reconstr Surg. 2020 Jan;145(1):117e-125e. doi: 10.1097/PRS.0000000000006319.
3 LL-37 causes cell death of human nasal epithelial cells, which is inhibited with a synthetic glycosaminoglycan.PLoS One. 2017 Aug 24;12(8):e0183542. doi: 10.1371/journal.pone.0183542. eCollection 2017.
4 Expression of Innate Immunity Genes in Epithelial Cells of Hypertrophic Adenoids with and without Pediatric Chronic Rhinosinusitis: A Preliminary Report.Chin Med J (Engl). 2015 Nov 5;128(21):2913-8. doi: 10.4103/0366-6999.168056.
5 Increased FGF3 and FGF4 gene dosage is a risk factor for craniosynostosis.Gene. 2014 Jan 25;534(2):435-9. doi: 10.1016/j.gene.2013.09.120. Epub 2013 Oct 8.
6 Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish.Dev Biol. 2007 Jun 15;306(2):505-15. doi: 10.1016/j.ydbio.2007.03.025. Epub 2007 Mar 24.
7 Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis.Int J Nanomedicine. 2019 Aug 6;14:6313-6324. doi: 10.2147/IJN.S202090. eCollection 2019.
8 IL-19 Up-Regulates Mucin 5AC Production in Patients With Chronic Rhinosinusitis via STAT3 Pathway.Front Immunol. 2019 Jul 17;10:1682. doi: 10.3389/fimmu.2019.01682. eCollection 2019.
9 Impact of chronic rhinosinusitis on severe asthma patients.PLoS One. 2017 Feb 15;12(2):e0171047. doi: 10.1371/journal.pone.0171047. eCollection 2017.
10 An autosomal dominant high bone mass phenotype in association with craniosynostosis in an extended family is caused by an LRP5 missense mutation. J Bone Miner Res. 2005 Jul;20(7):1254-60. doi: 10.1359/JBMR.050303. Epub 2005 Mar 7.
11 Enhanced expressions of lysozyme, SLPI and glycoprotein 340 in biofilm-associated chronic rhinosinusitis.Eur Arch Otorhinolaryngol. 2014 Jun;271(6):1563-71. doi: 10.1007/s00405-013-2758-8.
12 Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease.J Allergy Clin Immunol. 2017 Jun;139(6):1966-1978.e9. doi: 10.1016/j.jaci.2016.10.039. Epub 2016 Dec 18.
13 Differential expression and role of S100 proteins in chronic rhinosinusitis.Curr Opin Allergy Clin Immunol. 2020 Feb;20(1):14-22. doi: 10.1097/ACI.0000000000000595.
14 Epithelial physical barrier defects in chronic rhinosinusitis.Expert Rev Clin Immunol. 2019 Jun;15(6):679-688. doi: 10.1080/1744666X.2019.1601556. Epub 2019 Apr 9.
15 Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma.J Clin Med. 2019 Oct 25;8(11):1783. doi: 10.3390/jcm8111783.
16 Influence of leukotriene gene polymorphisms on chronic rhinosinusitis.BMC Med Genet. 2008 Mar 26;9:21. doi: 10.1186/1471-2350-9-21.
17 Upregulation of extraneuronal TRPV1 expression in chronic rhinosinusitis with nasal polyps.Rhinology. 2018 Sep 1;56(3):245-254. doi: 10.4193/Rhin17.108.
18 Genetics of rhinosinusitis.Curr Allergy Asthma Rep. 2011 Jun;11(3):236-46. doi: 10.1007/s11882-011-0189-4.
19 Eight weeks of omeprazole 20 mg significantly reduces both laryngopharyngeal reflux and comorbid chronic rhinosinusitis signs and symptoms: Randomised, double-blind, placebo-controlled trial.Clin Otolaryngol. 2018 Apr;43(2):496-501. doi: 10.1111/coa.13005. Epub 2017 Oct 23.
20 Qiliqiangxin Protects against Renal Injury in Rat with Cardiorenal Syndrome Type I through Regulating the Inflammatory and Oxidative Stress Signaling.Biol Pharm Bull. 2018;41(8):1178-1185. doi: 10.1248/bpb.b17-00930.
21 Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators.J Biol Chem. 2019 Apr 5;294(14):5430-5437. doi: 10.1074/jbc.AC119.007558. Epub 2019 Feb 25.
22 FcRIIIa-dependent IFN- release in whole blood assay is predictive of therapeutic IgG1 antibodies safety.MAbs. 2018 Aug/Sep;10(6):913-921. doi: 10.1080/19420862.2018.1474996. Epub 2018 Jul 26.
23 The expression of TSLP receptor in chronic rhinosinusitis with and without nasal polyps.Int J Immunopathol Pharmacol. 2011 Jul-Sep;24(3):761-8. doi: 10.1177/039463201102400322.
24 Expression of 11-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa.J Allergy Clin Immunol. 2014 Oct;134(4):926-934.e6. doi: 10.1016/j.jaci.2014.03.033. Epub 2014 May 5.
25 Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet. 2011 Nov 11;89(5):595-606. doi: 10.1016/j.ajhg.2011.09.015. Epub 2011 Oct 20.
26 Long-Term Safety of Topical Bacteriophage Application to the Frontal Sinus Region.Front Cell Infect Microbiol. 2017 Feb 24;7:49. doi: 10.3389/fcimb.2017.00049. eCollection 2017.
27 Desmoglein 3 Silencing Inhibits Inflammation and Goblet Cell Mucin Secretion in a Mouse Model of Chronic Rhinosinusitis via Disruption of the Wnt/-Catenin Signaling Pathway.Inflammation. 2019 Aug;42(4):1370-1382. doi: 10.1007/s10753-019-00998-z.
28 Efficacy and Safety of 3 Nasal Packing Materials Used After Functional Endoscopic Sinus Surgery for Chronic Rhinosinusitis: A Comparative Study in China.Med Sci Monit. 2017 Apr 25;23:1992-1998. doi: 10.12659/msm.899553.
29 Role of long purine stretches in controlling the expression of genes associated with neurological disorders.Gene. 2015 Nov 10;572(2):175-83. doi: 10.1016/j.gene.2015.07.007. Epub 2015 Jul 3.
30 Genetic associations and phenotypic heterogeneity in the craniosynostotic rabbit.PLoS One. 2018 Sep 20;13(9):e0204086. doi: 10.1371/journal.pone.0204086. eCollection 2018.
31 Association of mutations in FLNA with craniosynostosis.Eur J Hum Genet. 2015 Dec;23(12):1684-8. doi: 10.1038/ejhg.2015.31. Epub 2015 Apr 15.
32 Connexin gap junction channels and chronic rhinosinusitis.Int Forum Allergy Rhinol. 2016 Jun;6(6):611-7. doi: 10.1002/alr.21717. Epub 2016 Feb 25.
33 Evolution of the phenotype of craniosynostosis with dental anomalies syndrome and report of IL11RA variant population frequencies in a Crouzon-like autosomal recessive syndrome.Am J Med Genet A. 2019 Apr;179(4):668-673. doi: 10.1002/ajmg.a.61070. Epub 2019 Feb 27.
34 Significance of IgG4-positive cells in severe eosinophilic chronic rhinosinusitis.Allergol Int. 2019 Apr;68(2):216-224. doi: 10.1016/j.alit.2018.09.002. Epub 2018 Oct 11.
35 The activation and function of IL-36 in neutrophilic inflammation in chronic rhinosinusitis.J Allergy Clin Immunol. 2018 May;141(5):1646-1658. doi: 10.1016/j.jaci.2017.12.972. Epub 2017 Dec 21.
36 Endotype-driven precision medicine in chronic rhinosinusitis.Expert Rev Clin Immunol. 2019 Nov;15(11):1171-1183. doi: 10.1080/1744666X.2020.1679626. Epub 2019 Oct 22.
37 Polymorphisms in interleukin-1 receptor-associated kinase 4 are associated with total serum IgE.Allergy. 2009 May;64(5):746-53. doi: 10.1111/j.1398-9995.2008.01889.x. Epub 2009 Feb 27.
38 Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features.Am J Hum Genet. 2015 Mar 5;96(3):507-13. doi: 10.1016/j.ajhg.2015.01.016. Epub 2015 Feb 26.
39 Genetic variation in genes encoding airway epithelial potassium channels is associated with chronic rhinosinusitis in a pediatric population.PLoS One. 2014 Mar 3;9(3):e89329. doi: 10.1371/journal.pone.0089329. eCollection 2014.
40 Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus.Cell Death Differ. 2020 Apr;27(4):1415-1430. doi: 10.1038/s41418-019-0427-1. Epub 2019 Oct 3.
41 C-type natriuretic peptide analog treatment of craniosynostosis in a Crouzon syndrome mouse model.PLoS One. 2018 Jul 26;13(7):e0201492. doi: 10.1371/journal.pone.0201492. eCollection 2018.
42 Effects of pepsin A on heat shock protein 70 response in laryngopharyngeal reflux patients with chronic rhinosinusitis.Acta Otolaryngol. 2017 Dec;137(12):1253-1259. doi: 10.1080/00016489.2017.1360515. Epub 2017 Aug 8.
43 Craniosynostosis as a clinical and diagnostic problem: molecular pathology and genetic counseling.J Appl Genet. 2018 May;59(2):133-147. doi: 10.1007/s13353-017-0423-4. Epub 2018 Feb 1.
44 Expression and characterization of PGD2 receptors in chronic rhinosinusitis: modulation of DP and CRTH2 by PGD2.Int Arch Allergy Immunol. 2009;148(2):127-36. doi: 10.1159/000155743. Epub 2008 Sep 19.
45 Breakpoint mapping by whole genome sequencing identifies PTH2R gene disruption in a patient with midline craniosynostosis and a de novo balanced chromosomal rearrangement.J Med Genet. 2015 Oct;52(10):706-9. doi: 10.1136/jmedgenet-2015-103001. Epub 2015 Jun 4.
46 Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model.PLoS One. 2019 Aug 23;14(8):e0221402. doi: 10.1371/journal.pone.0221402. eCollection 2019.
47 Congenital myopathy with "corona" fibres, selective muscle atrophy, and craniosynostosis associated with novel recessive mutations in SCN4A.Neuromuscul Disord. 2017 Jun;27(6):574-580. doi: 10.1016/j.nmd.2017.02.001. Epub 2017 Feb 8.
48 Clinical genetics of craniosynostosis.Curr Opin Pediatr. 2017 Dec;29(6):622-628. doi: 10.1097/MOP.0000000000000542.
49 Craniosynostosis, psychomotor retardation, and facial dysmorphic features in a Spanish patient with a 4q27q28.3 deletion.Childs Nerv Syst. 2014 Dec;30(12):2157-61. doi: 10.1007/s00381-014-2474-8. Epub 2014 Jul 1.
50 Role of Toll-like receptor 9 signaling on activation of nasal polyp-derived fibroblasts and its association with nasal polypogenesis.Int Forum Allergy Rhinol. 2018 Sep;8(9):1001-1012. doi: 10.1002/alr.22155. Epub 2018 Jun 14.
51 Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma.Proc Natl Acad Sci U S A. 2019 May 7;116(19):9543-9551. doi: 10.1073/pnas.1819745116. Epub 2019 Apr 15.
52 Receptor activator of nuclear factor B ligand is a biomarker for osteitis of chronic rhinosinusitis.Int Forum Allergy Rhinol. 2020 Mar;10(3):364-373. doi: 10.1002/alr.22481. Epub 2019 Nov 6.
53 Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J Biol Chem. 2015 Nov 13;290(46):27604-17.
54 De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. Am J Hum Genet. 2017 Nov 2;101(5):833-843. doi: 10.1016/j.ajhg.2017.09.016.
55 Natural killer cells regulate eosinophilic inflammation in chronic rhinosinusitis.Sci Rep. 2016 Jun 8;6:27615. doi: 10.1038/srep27615.
56 Accelerated Skeletal Maturation in Disorders of Retinoic Acid Metabolism: A Case Report and Focused Review of the Literature.Horm Metab Res. 2016 Nov;48(11):737-744. doi: 10.1055/s-0042-114038. Epub 2016 Sep 2.
57 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
58 Genetic Analysis of Syndromic and Nonsyndromic Patients With Craniosynostosis Identifies Novel Mutations in the TWIST1 and EFNB1 Genes.Cleft Palate Craniofac J. 2018 Sep;55(8):1092-1102. doi: 10.1177/1055665618760412. Epub 2018 Mar 21.
59 Targeted disruption of the Mn1 oncogene results in severe defects in development of membranous bones of the cranial skeleton.Mol Cell Biol. 2005 May;25(10):4229-36. doi: 10.1128/MCB.25.10.4229-4236.2005.
60 Deviating dental arch morphology in mild coronal craniosynostosis syndromes.Clin Oral Investig. 2019 Jul;23(7):2995-3003. doi: 10.1007/s00784-018-2710-9. Epub 2018 Nov 3.
61 Potocki-Shaffer deletion encompassing ALX4 in a patient with frontonasal dysplasia phenotype.Am J Med Genet A. 2014 Feb;164A(2):346-52. doi: 10.1002/ajmg.a.36140. Epub 2013 Dec 13.
62 Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis.J Allergy Clin Immunol Pract. 2019 Nov-Dec;7(8):2812-2820.e3. doi: 10.1016/j.jaip.2019.05.009. Epub 2019 May 22.
63 Molecular Analysis of Ephrin A4 and Ephrin B1 in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin.Cleft Palate Craniofac J. 2018 Aug;55(7):1020-1025. doi: 10.1597/16-135. Epub 2018 Feb 22.
64 FGF9 mutation causes craniosynostosis along with multiple synostoses.Hum Mutat. 2017 Nov;38(11):1471-1476. doi: 10.1002/humu.23292. Epub 2017 Jul 25.
65 Lack of additional effects of long-term, low-dose clarithromycin combined treatment compared with topical steroids alone for chronic rhinosinusitis in China: a randomized, controlled trial.Int Forum Allergy Rhinol. 2018 Jan;8(1):8-14. doi: 10.1002/alr.22041. Epub 2017 Nov 30.
66 MUC5B secretion is up-regulated in sinusitis compared with controls.Am J Rhinol. 2006 Sep-Oct;20(5):554-7. doi: 10.2500/ajr.2006.20.2935.
67 Medical treatment of craniosynostosis: recombinant Noggin inhibits coronal suture closure in the rat craniosynostosis model.Orthod Craniofac Res. 2009 Aug;12(3):254-62. doi: 10.1111/j.1601-6343.2009.01460.x.
68 RECQL4 Regulates p53 Function In Vivo During Skeletogenesis.J Bone Miner Res. 2015 Jun;30(6):1077-89. doi: 10.1002/jbmr.2436.
69 Craniosynostosis in patients with RASopathies: Accumulating clinical evidence for expanding the phenotype.Am J Med Genet A. 2017 Sep;173(9):2346-2352. doi: 10.1002/ajmg.a.38337. Epub 2017 Jun 26.
70 Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to Eosinophilic Chronic Rhinosinusitis.Am J Respir Crit Care Med. 2017 Mar 15;195(6):737-747. doi: 10.1164/rccm.201603-0529OC.
71 Mutations of the TWIST gene in the Saethre-Chotzen syndrome.Nat Genet. 1997 Jan;15(1):42-6. doi: 10.1038/ng0197-42.
72 The role of ADAM-like decysin 1 in non-eosinophilic chronic rhinosinusitis with nasal polyps.Acta Otolaryngol. 2018 Sep;138(9):830-836. doi: 10.1080/00016489.2018.1481296. Epub 2018 Jun 23.
73 Extending the phenotype of Xia-Gibbs syndrome in a two-year-old patient with craniosynostosis with a novel de novo AHDC1 missense mutation.Eur J Med Genet. 2020 Jan;63(1):103637. doi: 10.1016/j.ejmg.2019.03.001. Epub 2019 Mar 8.
74 Copeptin level in the early prediction of cardiorenal syndrome in rats.Exp Ther Med. 2018 Aug;16(2):937-944. doi: 10.3892/etm.2018.6239. Epub 2018 May 30.
75 B3GAT3-related disorder with craniosynostosis and bone fragility due to a unique mutation.Genet Med. 2018 Feb;20(2):269-274. doi: 10.1038/gim.2017.109. Epub 2017 Aug 3.
76 Nonsyndromic craniosynostosis: novel coding variants.Pediatr Res. 2019 Mar;85(4):463-468. doi: 10.1038/s41390-019-0274-2. Epub 2019 Jan 14.
77 A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis.Hum Mol Genet. 2019 Aug 1;28(15):2501-2513. doi: 10.1093/hmg/ddz072.
78 B cell lymphoma-2-like protein-12 association with T-helper 2 inflammation in chronic rhinosinusitis with allergy.Int Forum Allergy Rhinol. 2018 Nov;8(11):1300-1307. doi: 10.1002/alr.22223. Epub 2018 Oct 3.
79 Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis.Allergy. 2012 Jul;67(7):920-8. doi: 10.1111/j.1398-9995.2012.02848.x.
80 Possible Compartmental Cytokine Release Syndrome in a Patient With Recurrent Ovarian Cancer After Treatment With Mesothelin-targeted CAR-T Cells.J Immunother. 2017 Apr;40(3):104-107. doi: 10.1097/CJI.0000000000000160.
81 Increased Expressions and Roles of CC Chemokine Ligand 21 and CC Chemokine Ligand 25 in Chronic Rhinosinusitis with Nasal Polyps.Int Arch Allergy Immunol. 2020;181(3):159-169. doi: 10.1159/000504476. Epub 2019 Dec 11.
82 Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: Possible role of the nongastric H,K-ATPase.J Allergy Clin Immunol. 2017 Jan;139(1):130-141.e11. doi: 10.1016/j.jaci.2016.07.020. Epub 2016 Oct 4.
83 Discordant frequencies of tissue-resident and circulating CD180-negative B cells in chronic rhinosinusitis.Int Forum Allergy Rhinol. 2017 Jun;7(6):609-614. doi: 10.1002/alr.21924. Epub 2017 Feb 25.
84 CD8A gene polymorphisms predict severity factors in chronic rhinosinusitis.Int Forum Allergy Rhinol. 2013 Aug;3(8):605-11. doi: 10.1002/alr.21174. Epub 2013 May 2.
85 Pathogenic variants in CDC45 on the remaining allele in patients with a chromosome 22q11.2 deletion result in a novel autosomal recessive condition.Genet Med. 2020 Feb;22(2):326-335. doi: 10.1038/s41436-019-0645-4. Epub 2019 Sep 2.
86 A role for anti-BP180 autoantibodies in chronic rhinosinusitis.Laryngoscope. 2013 Sep;123(9):2104-11. doi: 10.1002/lary.24016.
87 Expression and Functional Analysis of CST1 in Intractable Nasal Polyps.Am J Respir Cell Mol Biol. 2018 Oct;59(4):448-457. doi: 10.1165/rcmb.2017-0325OC.
88 Cytokine release syndrome: grading, modeling, and new therapy.J Hematol Oncol. 2018 Sep 24;11(1):121. doi: 10.1186/s13045-018-0653-x.
89 Primary role of growth-related oncogene-alpha and granulocyte chemotactic protein-2 as neutrophil chemoattractants in chronic rhinosinusitis.Clin Exp Allergy. 2006 Jun;36(6):748-59. doi: 10.1111/j.1365-2222.2006.02501.x.
90 Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2).J Biol Chem. 2012 Jun 15;287(25):21429-38. doi: 10.1074/jbc.M112.362145. Epub 2012 Apr 30.
91 A novel mutation of DNAH5 in chronic rhinosinusitis and primary ciliary dyskinesia in a Chinese family.Eur Arch Otorhinolaryngol. 2014 Jun;271(6):1589-94. doi: 10.1007/s00405-013-2788-2. Epub 2013 Oct 23.
92 Correlation between systemic inflammatory response and quality of life in patients with chronic rhinosinusitis.Int Forum Allergy Rhinol. 2019 May;9(5):458-465. doi: 10.1002/alr.22289. Epub 2019 Jan 18.
93 Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome.Nat Genet. 1996 Feb;12(2):209-11. doi: 10.1038/ng0296-209.
94 Characterization of the first FGFRL1 mutation identified in a craniosynostosis patient.Biochim Biophys Acta. 2009 Feb;1792(2):112-21. doi: 10.1016/j.bbadis.2008.11.006. Epub 2008 Nov 13.
95 Two cases with de novo 3q26.31 microdeletion suggest a role for FNDC3B in human craniofacial development.Am J Med Genet A. 2016 Dec;170(12):3276-3281. doi: 10.1002/ajmg.a.37892. Epub 2016 Aug 19.
96 Increased EFG- and PDGFalpha-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis.Hum Mol Genet. 2010 May 1;19(9):1678-89. doi: 10.1093/hmg/ddq045. Epub 2010 Feb 2.
97 Alterations in mandibular morphology associated with glypican 1 and glypican 3 gene mutations.Orthod Craniofac Res. 2017 Aug;20(3):183-187. doi: 10.1111/ocr.12170. Epub 2017 Apr 20.
98 Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. 2010 Jun 11;86(6):949-56. doi: 10.1016/j.ajhg.2010.04.012. Epub 2010 May 20.
99 Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets.Front Physiol. 2017 Dec 19;8:1036. doi: 10.3389/fphys.2017.01036. eCollection 2017.
100 Expression and regulation of interleukin-9 in chronic rhinosinusitis.Am J Rhinol Allergy. 2015 Jan-Feb;29(1):e18-23. doi: 10.2500/ajra.2015.29.4136.
101 Anti-osteogenic function of a LIM-homeodomain transcription factor LMX1B is essential to early patterning of the calvaria.Dev Biol. 2018 Nov 15;443(2):103-116. doi: 10.1016/j.ydbio.2018.05.022. Epub 2018 May 28.
102 The role of ICP overnight monitoring (ONM) in children with suspected craniostenosis.Childs Nerv Syst. 2020 Jan;36(1):87-94. doi: 10.1007/s00381-019-04288-9. Epub 2019 Jul 4.
103 MED13L haploinsufficiency syndrome: A de novo frameshift and recurrent intragenic deletions due to parental mosaicism.Am J Med Genet A. 2017 May;173(5):1264-1269. doi: 10.1002/ajmg.a.38168. Epub 2017 Mar 29.
104 Aberrant mucin glycoprotein patterns of chronic rhinosinusitis patients with bacterial biofilms.Am J Rhinol Allergy. 2010 Sep-Oct;24(5):319-24. doi: 10.2500/ajra.2010.24.3504.
105 Combined therapy with melatonin and exendin-4 effectively attenuated the deterioration of renal function in rat cardiorenal syndrome.Am J Transl Res. 2017 Feb 15;9(2):214-229. eCollection 2017.
106 Improving patient care via development of a protein-based diagnostic test for microbe-specific detection of chronic rhinosinusitis.Laryngoscope. 2014 Mar;124(3):608-15. doi: 10.1002/lary.24333. Epub 2013 Oct 2.
107 Chronic Rhinosinusitis Patients Show Accumulation of Genetic Variants in PARS2.PLoS One. 2016 Jun 27;11(6):e0158202. doi: 10.1371/journal.pone.0158202. eCollection 2016.
108 Protocadherin-1 is a glucocorticoid-responsive critical regulator of airway epithelial barrier function.BMC Pulm Med. 2015 Jul 31;15:80. doi: 10.1186/s12890-015-0078-z.
109 Mineralized tissues in hypophosphatemic rickets.Pediatr Nephrol. 2020 Oct;35(10):1843-1854. doi: 10.1007/s00467-019-04290-y. Epub 2019 Aug 8.
110 Group II subfamily secretory phospholipase A2 enzymes: expression in chronic rhinosinusitis with and without nasal polyps.Allergy. 2007 Sep;62(9):999-1006. doi: 10.1111/j.1398-9995.2007.01381.x. Epub 2007 Jun 18.
111 Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma.Laryngoscope. 2008 May;118(5):881-9. doi: 10.1097/MLG.0b013e31816b4b6f.
112 Relationship of eosinophils and plasma cells to biofilm in chronic rhinosinusitis.Am J Rhinol Allergy. 2013 Jul-Aug;27(4):e85-90. doi: 10.2500/ajra.2013.27.3917.
113 Expression of microRNA machinery proteins in different types of chronic rhinosinusitis.Laryngoscope. 2012 Dec;122(12):2621-7. doi: 10.1002/lary.23517. Epub 2012 Sep 7.
114 Differentially Regulated Host Proteins Associated with Chronic Rhinosinusitis Are Correlated with the Sinonasal Microbiome.Front Cell Infect Microbiol. 2017 Dec 6;7:504. doi: 10.3389/fcimb.2017.00504. eCollection 2017.
115 The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds.PLoS One. 2017 Sep 13;12(9):e0181302. doi: 10.1371/journal.pone.0181302. eCollection 2017.
116 Further delineation of spondyloepimetaphyseal dysplasia Faden-Alkuraya type: A RSPRY1-associated spondylo-epi-metaphyseal dysplasia with cono-brachydactyly and craniosynostosis.Am J Med Genet A. 2018 Sep;176(9):2009-2016. doi: 10.1002/ajmg.a.40427. Epub 2018 Jul 31.
117 FGFR2 mutation in 46,XY sex reversal with craniosynostosis.Hum Mol Genet. 2015 Dec 1;24(23):6699-710. doi: 10.1093/hmg/ddv374. Epub 2015 Sep 11.
118 The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis.Respir Res. 2011 Mar 8;12(1):28. doi: 10.1186/1465-9921-12-28.
119 Sinonasal surfactant protein A1, A2, and D gene expression in cystic fibrosis: a preliminary report.Otolaryngol Head Neck Surg. 2007 Jul;137(1):34-8. doi: 10.1016/j.otohns.2007.01.025.
120 Surfactant protein B detection and gene expression in chronic rhinosinusitis.Laryngoscope. 2007 Jul;117(7):1296-301. doi: 10.1097/MLG.0b013e31805c9a28.
121 Identification and analysis of the genetic causes in nine unrelated probands with syndromic craniosynostosis.Gene. 2018 Jan 30;641:144-150. doi: 10.1016/j.gene.2017.10.041. Epub 2017 Oct 14.
122 RNA sequencing and pathway analysis identify tumor necrosis factor alpha driven small proline-rich protein dysregulation in chronic rhinosinusitis.Am J Rhinol Allergy. 2017 Sep 1;31(5):283-288. doi: 10.2500/ajra.2017.31.4457.
123 Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study.Int Forum Allergy Rhinol. 2014 Mar;4(3):200-6. doi: 10.1002/alr.21275. Epub 2014 Jan 10.
124 The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis.Front Immunol. 2018 Mar 28;9:624. doi: 10.3389/fimmu.2018.00624. eCollection 2018.
125 Early Craniofacial Defects in Zebrafish That Have Reduced Function of a Wnt-Interacting Extracellular Matrix Protein, Tinagl1.Cleft Palate Craniofac J. 2017 Jul;54(4):381-390. doi: 10.1597/15-283. Epub 2016 May 31.