General Information of Disease (ID: DISTLKOB)

Disease Name Spinal muscular atrophy
Disease Class 8B61: Muscular atrophy
Definition
Spinal muscular atrophy (SMA) refers to a group of inherited conditions that affect the muscles. The severity of the condition; the associated signs and symptoms; and the age at which symptoms develop varies by subtype. In general, people with SMA experience progressive weakness and atrophy of muscles involved in mobility, the ability to sit unassisted, and head control. Breathing and swallowing may also be affected in severe cases. SMA is generally caused by changes (mutations) in the SMN1 gene and is inherited in an autosomal recessive manner. Extra copies of the SMN2 gene modify the severity of SMA. Rare autosomal dominant (caused by mutations in DYNC1H1, BICD2, or VAPB genes) and X-linked (caused by mutations in UBA1) forms of SMA exist. Treatment is based on the signs and symptoms present in each person.
Disease Hierarchy
DISF6XLX: Anterior horn disorder
DISUHWUI: Motor neurone disease
DISTLKOB: Spinal muscular atrophy
ICD Code
ICD-11
ICD-11: 8B61
Expand ICD-11
'8B61
Expand ICD-10
'G12; 'G12.1; 'G12.8; 'G12.9
Expand ICD-9
335
Disease Identifiers
MONDO ID
MONDO_0001516
MESH ID
D009134
UMLS CUI
C0026847
MedGen ID
7755
HPO ID
HP:0007269
SNOMED CT ID
5262007

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 4 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
nusinersen DMRSX53 Approved Antisense drug [1]
Risdiplam DMIMF8J Approved NA [2]
Sodium phenylbutyrate DMXLBCQ Approved Small molecular drug [3]
Zolgensma DM57O90 Approved Gene therapy [4]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 9 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
AVXS-101 DMH6U5P Phase 3 NA [5]
ISIS-SMNRx DMX1RKJ Phase 3 NA [6]
LMI070 DM4OAIU Phase 3 NA [7]
CK-2127107 DM9FHV8 Phase 2 NA [7]
RG6237 DM6GJTS Phase 2 NA [8]
SRK-015 DMYAXNM Phase 2 Antibody [9]
RG7800 DMAGE91 Phase 1/2 NA [10]
BIIB115 DMD0YJ5 Phase 1 Antisense oligonucleotide [11]
RG3039 DM8GC65 Phase 1 NA [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
This Disease is Treated as An Indication in 2 Investigative Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
AAV2/8-CBA-hSMN1 DMBZS2G Investigative NA [13]
PRO-105 DMX8M3W Investigative NA [13]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 35 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
SIGMAR1 TT5TPI6 Limited Biomarker [14]
TRPV4 TTKP2SU Limited Genetic Variation [15]
ACVR2B TTLFRKS moderate Biomarker [16]
GJB1 TTSJIRP moderate Genetic Variation [17]
ITGA11 TTANXZ7 moderate Biomarker [18]
SLCO2A1 TTKVTQO moderate Biomarker [19]
UBA1 TTXHWA7 moderate Altered Expression [20]
C9orf72 TTA4SHR Strong Biomarker [21]
CARM1 TTIZQFJ Strong Biomarker [22]
CNTN1 TTPR8FK Strong Altered Expression [23]
CTF1 TTXGTZU Strong Biomarker [24]
DCPS TTLSW9V Strong Altered Expression [25]
DMD TTWLFXU Strong Biomarker [26]
DNM1 TTE3JW9 Strong Biomarker [27]
EPHA4 TTG84D3 Strong Biomarker [28]
FUS TTKGYZ9 Strong Biomarker [29]
GART TTEXB9Z Strong Biomarker [20]
GM2A TTGOFW6 Strong Genetic Variation [30]
HCN1 TTNB6UQ Strong Altered Expression [31]
HCN2 TT9EUT4 Strong Altered Expression [31]
HEXA TTJI5JW Strong Biomarker [32]
HOXA5 TTXSVQP Strong Biomarker [33]
HTT TTIWZ0O Strong Biomarker [34]
KHDRBS1 TTAT6C7 Strong Biomarker [35]
MAP3K10 TT9FN4J Strong Biomarker [36]
MAPK10 TT056SO Strong Biomarker [37]
MYH7 TTNIMDP Strong Biomarker [38]
NR1D1 TTAD1O8 Strong Biomarker [39]
RPS6KB2 TTMVQXO Strong Genetic Variation [40]
SLC1A3 TT8WRDA Strong Biomarker [41]
SLC23A2 TTOP832 Strong Genetic Variation [42]
STRAP TT165DP Strong Biomarker [43]
TARDBP TT9RZ03 Strong Biomarker [44]
VDAC2 TTM1I7L Strong Altered Expression [45]
SMN1 TT8QL6X Definitive Autosomal recessive [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC25A21 DT2UQYR Strong Biomarker [47]
SLC7A10 DTVL2JY Definitive Biomarker [48]
------------------------------------------------------------------------------------
This Disease Is Related to 93 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
BICD2 OTVJ03NZ Limited Genetic Variation [49]
CHCHD10 OTCDHAM6 Limited Genetic Variation [50]
EXOSC8 OT75ACNG Limited Genetic Variation [51]
PLS3 OTYBM4PK Limited Biomarker [52]
CARD16 OT4NUHWB moderate Biomarker [53]
CHODL OTVCNOUQ moderate Biomarker [54]
CORO1C OTXDF9T3 moderate Biomarker [55]
DROSHA OTCE68KZ moderate Biomarker [56]
ETFA OTXX61VZ moderate Biomarker [57]
GARS1 OT5B6R9Y moderate Biomarker [20]
HTRA2 OTC7616F moderate Altered Expression [58]
IGFALS OTTWCZYM moderate Biomarker [48]
LIX1 OT1CPNCC moderate Genetic Variation [59]
NRXN2 OTB04QSU moderate Altered Expression [60]
PLA1A OT2IXYNX moderate Biomarker [61]
RNPC3 OTW5MKC1 moderate Biomarker [62]
TIA1 OTGPN3P8 moderate Biomarker [63]
ARHGAP22 OTXUQEFL Strong Biomarker [64]
ARID4B OTYLPILE Strong Biomarker [65]
ARSF OTC0L12N Strong Biomarker [66]
ASAH1 OT1DNGXL Strong Biomarker [67]
ASCC1 OTH4VAP9 Strong Posttranslational Modification [68]
ATAD3A OTWF6HBP Strong Biomarker [69]
ATP6V1B2 OTNX2V4Z Strong Altered Expression [70]
BICD1 OT78IYPF Strong Genetic Variation [71]
CANX OTYP1F6J Strong Biomarker [72]
CCDC8 OTO295IH Strong Biomarker [72]
CD2AP OTC76KQM Strong Biomarker [73]
CDK2AP1 OTNFOHDJ Strong Genetic Variation [74]
CELF2 OTLJJ4VT Strong Altered Expression [75]
CHML OTW3VW8D Strong Altered Expression [64]
CHP1 OTHTXN1A Strong Biomarker [52]
COIL OTP4I4DL Strong Biomarker [76]
COPA OTZ1DTXU Strong Biomarker [53]
DNAJB2 OTZHPV5M Strong Genetic Variation [77]
DYNC1H1 OTD1KRKO Strong Genetic Variation [74]
EEF1D OTM5ZD8Y Strong Genetic Variation [78]
EIF3K OTGTKVGO Strong Genetic Variation [79]
ELAVL4 OT3YH6J6 Strong Biomarker [80]
EMX1 OT7NG5MJ Strong Biomarker [81]
ERCC3 OTVAW3P1 Strong Biomarker [82]
EXOSC3 OTNCF906 Strong Biomarker [83]
FBXO32 OTUE978R Strong Biomarker [84]
GCHFR OTEOT8GI Strong Biomarker [85]
GEMIN2 OT4L6TLL Strong Biomarker [35]
GEMIN6 OTE262KF Strong Biomarker [86]
GEMIN8 OTXGA3N9 Strong Biomarker [87]
GTF2H3 OT87W5QJ Strong Biomarker [82]
GTF2H4 OTPD1DIU Strong Biomarker [82]
GTF2H5 OTRL219S Strong Biomarker [82]
HAPLN1 OTXWR9TJ Strong Biomarker [88]
HNRNPR OT3FITK2 Strong Biomarker [89]
IGHMBP2 OTAZFPF5 Strong Genetic Variation [90]
KDSR OTCIES3H Strong Genetic Variation [91]
KIF1B OTI1XQTO Strong Biomarker [92]
LSM2 OTHL77NY Strong Biomarker [93]
MAD2L1BP OT2O2IUJ Strong Biomarker [92]
MAP1B OTVXW089 Strong Biomarker [94]
MORC2 OT52A8BJ Strong Genetic Variation [95]
MYOG OTPLJKFA Strong Biomarker [96]
NAIP OTLA925F Strong Biomarker [97]
NCALD OTJZ8UEL Strong Biomarker [36]
NCDN OT5CE7LO Strong Biomarker [98]
NCOR2 OTY917X0 Strong Genetic Variation [42]
NEFH OTMSCW5I Strong Biomarker [99]
NEFL OTQESJV4 Strong Biomarker [100]
OXA1L OTS0BFRD Strong Biomarker [101]
PAX7 OTDMQRPO Strong Altered Expression [102]
POP5 OTCZTDJC Strong Genetic Variation [103]
POP7 OTKC7SG5 Strong Genetic Variation [103]
PPP1R11 OTSHYPPW Strong Biomarker [104]
PSMD4 OTH1VZTM Strong Biomarker [66]
RAB1A OTKPHRD0 Strong Biomarker [105]
RAB8A OTPB54Y3 Strong Altered Expression [106]
RBM7 OTFIWTMF Strong Genetic Variation [107]
RNASE4 OTA5SZLC Strong Biomarker [105]
RPL9 OTKE01O8 Strong Altered Expression [42]
SCAF11 OTX59D0X Strong Biomarker [108]
SCO2 OTJQQDRS Strong Genetic Variation [109]
SERF1A OT9F7AMT Strong Biomarker [110]
SETX OTG3JNOQ Strong Altered Expression [111]
SLC25A46 OTFEV9SV Strong Genetic Variation [51]
SMNDC1 OTGUZYMJ Strong Biomarker [112]
STARD13 OTB4U1HY Strong Biomarker [113]
STATH OTQHBHM9 Strong Genetic Variation [114]
SYNCRIP OTRNDZXB Strong Altered Expression [60]
TBCD OTS4JKNQ Strong Biomarker [115]
TK2 OTS1V4XB Strong Genetic Variation [116]
TMEM41B OTW0B0KS Strong Biomarker [117]
TRA2B OTZYQW52 Strong Altered Expression [58]
TRIP4 OTA8OASA Strong Biomarker [48]
RPL3 OTX6VXLB Definitive Biomarker [48]
SMN1 OT54RLO1 Definitive Autosomal recessive [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 93 DOT(s)

References

1 2016 FDA drug approvals. Nat Rev Drug Discov. 2017 Feb 2;16(2):73-76.
2 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health Human Services. 2020
3 ClinicalTrials.gov (NCT00533559) Mechanism of Fatty Acid-induced Impairment of Glucose-simulated Insulin Secretion - Effect of Buphenyl. U.S. National Institutes of Health.
4 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health Human Services.
5 ClinicalTrials.gov (NCT04851873) Safety and Efficacy of Intravenous OAV101 (AVXS-101) in Pediatric Patients With Spinal Muscular Atrophy (SMA) (SMART). U.S. National Institutes of Health.
6 ClinicalTrials.gov (NCT02292537) A Study to Assess the Efficacy and Safety of ISIS-SMN Rx in Patients With Later-onset Spinal Muscular Atrophy. U.S. National Institutes of Health.
7 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
8 Clinical pipeline report, company report or official report of Roche
9 ClinicalTrials.gov (NCT03921528) An Active Treatment Study of SRK-015 in Patients With Type 2 or Type 3 Spinal Muscular Atrophy (TOPAZ). U.S. National Institutes of Health.
10 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800039744)
11 ClinicalTrials.gov (NCT05575011) A Randomized, Blinded, Placebo-Controlled, Phase 1 Single Ascending Dose Study in Healthy Adult Male Volunteers and an Open-Label Multiple Ascending Dose Study in Pediatric SMA Participants Previously Treated With Onasemnogene Abeparvovec (Zolgensma?) to Evaluate the Safety, Tolerability, and Pharmacokinetics of BIIB115. U.S.National Institutes of Health.
12 2011 Pipeline of Repligen.
13 The ChEMBL database in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954.
14 Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/- Mouse Model of Spinal Muscular Atrophy.J Neuropathol Exp Neurol. 2018 Jul 1;77(7):577-597. doi: 10.1093/jnen/nly033.
15 A case of congenital spinal muscular atrophy with pain due to a mutation in TRPV4.Neuromuscul Disord. 2016 Dec;26(12):841-843. doi: 10.1016/j.nmd.2016.09.013. Epub 2016 Sep 16.
16 Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy.PLoS One. 2016 Nov 21;11(11):e0166803. doi: 10.1371/journal.pone.0166803. eCollection 2016.
17 Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease.Muscle Nerve. 2005 Apr;31(4):431-51. doi: 10.1002/mus.20279.
18 Integrin 11 is overexpressed by tumour stroma of head and neck squamous cell carcinoma and correlates positively with alpha smooth muscle actin expression.J Oral Pathol Med. 2017 Apr;46(4):267-275. doi: 10.1111/jop.12493. Epub 2016 Oct 4.
19 Preimplantation Genetic Testing for Monogenic Disease of Spinal Muscular Atrophy by Multiple Displacement Amplification: 11 unaffected livebirths.Int J Med Sci. 2019 Sep 7;16(9):1313-1319. doi: 10.7150/ijms.32319. eCollection 2019.
20 UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy.Brain. 2018 Oct 1;141(10):2878-2894. doi: 10.1093/brain/awy237.
21 Analysis of the C9orf72 gene in spinal muscular atrophy patients.Amyotroph Lateral Scler Frontotemporal Degener. 2014 Dec;15(7-8):563-8. doi: 10.3109/21678421.2014.929148. Epub 2014 Jul 7.
22 A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy.Nucleic Acids Res. 2016 Apr 7;44(6):2661-76. doi: 10.1093/nar/gkv1334. Epub 2015 Dec 9.
23 An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy.PLoS One. 2016 Jun 22;11(6):e0157426. doi: 10.1371/journal.pone.0157426. eCollection 2016.
24 Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy.Hum Mol Genet. 2003 Jun 1;12(11):1233-9. doi: 10.1093/hmg/ddg143.
25 The natural antisense transcript NATTD regulates the transcription of decapping scavenger (DcpS) enzyme.Int J Biochem Cell Biol. 2019 May;110:103-110. doi: 10.1016/j.biocel.2019.03.005. Epub 2019 Mar 8.
26 New developments in exon skipping and splice modulation therapies for neuromuscular diseases.Expert Opin Biol Ther. 2014 Jun;14(6):809-19. doi: 10.1517/14712598.2014.896335. Epub 2014 Mar 12.
27 CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis.Brain. 2018 Aug 1;141(8):2343-2361. doi: 10.1093/brain/awy167.
28 Lowering EphA4 Does Not Ameliorate Disease in a Mouse Model for Severe Spinal Muscular Atrophy.Front Neurosci. 2019 Nov 19;13:1233. doi: 10.3389/fnins.2019.01233. eCollection 2019.
29 The expression of SMN1, MART3, GLE1 and FUS genes in spinal muscular atrophy.Folia Histochem Cytobiol. 2018;56(4):215-221. doi: 10.5603/FHC.a2018.0022. Epub 2018 Dec 19.
30 Refined mapping of the GM2 activator protein (GM2A) locus to 5q31.3-q33.1, distal to the spinal muscular atrophy locus.Genomics. 1993 Nov;18(2):429-31. doi: 10.1006/geno.1993.1491.
31 Increase of hyperpolarization-activated cyclic nucleotide-gated current in the aberrant excitability of spinal muscular atrophy.Ann Neurol. 2018 Mar;83(3):494-507. doi: 10.1002/ana.25168. Epub 2018 Mar 10.
32 Juvenile-onset spinal muscular atrophy caused by compound heterozygosity for mutations in the HEXA gene.Ann Neurol. 1997 May;41(5):631-8. doi: 10.1002/ana.410410512.
33 Deregulation of ZPR1 causes respiratory failure in spinal muscular atrophy.Sci Rep. 2017 Aug 15;7(1):8295. doi: 10.1038/s41598-017-07603-z.
34 Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets.Front Neurosci. 2017 Mar 31;11:149. doi: 10.3389/fnins.2017.00149. eCollection 2017.
35 Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes.J Clin Invest. 2018 Jul 2;128(7):3008-3023. doi: 10.1172/JCI95231. Epub 2018 Jun 11.
36 Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological.Front Mol Neurosci. 2019 Feb 12;12:19. doi: 10.3389/fnmol.2019.00019. eCollection 2019.
37 Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.Hum Mol Genet. 2015 Dec 15;24(24):6986-7004. doi: 10.1093/hmg/ddv401. Epub 2015 Sep 30.
38 Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31.Hum Mol Genet. 1996 Sep;5(9):1377-82. doi: 10.1093/hmg/5.9.1377.
39 Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice.Hum Mol Genet. 2018 Oct 15;27(20):3582-3597. doi: 10.1093/hmg/ddy249.
40 Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy.Hum Mol Genet. 2019 Apr 1;28(7):1076-1089. doi: 10.1093/hmg/ddy382.
41 Oxidative stress and disturbed glutamate transport in spinal muscular atrophy.Brain Dev. 2002 Dec;24(8):770-5. doi: 10.1016/s0387-7604(02)00103-1.
42 Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity. PLoS One. 2015 Mar 30;10(3):e0121964.
43 SMN and Gemins: 'we are family' ?or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN.Bioessays. 2010 Dec;32(12):1077-89. doi: 10.1002/bies.201000088. Epub 2010 Oct 15.
44 Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice.Hum Mol Genet. 2016 Sep 15;25(18):4080-4093. doi: 10.1093/hmg/ddw247. Epub 2016 Jul 27.
45 Reversible molecular pathology of skeletal muscle in spinal muscular atrophy.Hum Mol Genet. 2011 Nov 15;20(22):4334-44. doi: 10.1093/hmg/ddr360. Epub 2011 Aug 12.
46 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
47 Correction: Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.Genet Med. 2019 Sep;21(9):2163-2164. doi: 10.1038/s41436-019-0506-1.
48 ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy.Ann Neurol. 2020 Feb;87(2):217-232. doi: 10.1002/ana.25660. Epub 2019 Dec 27.
49 BICD2 mutational analysis in hereditary spastic paraplegia and hereditary motor and sensory neuropathy.Muscle Nerve. 2019 Apr;59(4):484-486. doi: 10.1002/mus.26394. Epub 2018 Dec 21.
50 Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases.Mol Neurobiol. 2017 Sep;54(7):5534-5546. doi: 10.1007/s12035-016-0099-5. Epub 2016 Sep 8.
51 Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature.Eur J Paediatr Neurol. 2018 Jul;22(4):674-681. doi: 10.1016/j.ejpn.2018.03.011. Epub 2018 Apr 3.
52 PLS3 Overexpression Delays Ataxia in Chp1 Mutant Mice.Front Neurosci. 2019 Sep 19;13:993. doi: 10.3389/fnins.2019.00993. eCollection 2019.
53 Interaction between alpha-COP and SMN ameliorates disease phenotype in a mouse model of spinal muscular atrophy.Biochem Biophys Res Commun. 2019 Jun 25;514(2):530-537. doi: 10.1016/j.bbrc.2019.04.176. Epub 2019 May 3.
54 Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation.Cell Rep. 2019 Oct 29;29(5):1082-1098.e10. doi: 10.1016/j.celrep.2019.09.033.
55 Modifier genes: Moving from pathogenesis to therapy.Mol Genet Metab. 2017 Sep;122(1-2):1-3. doi: 10.1016/j.ymgme.2017.05.018. Epub 2017 May 30.
56 Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy.Sci Rep. 2018 May 21;8(1):7907. doi: 10.1038/s41598-018-26347-y.
57 Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle.Neurol Sci. 2019 Apr;40(4):671-681. doi: 10.1007/s10072-019-03764-z. Epub 2019 Feb 25.
58 Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1.Hum Genet. 2003 Dec;114(1):11-21. doi: 10.1007/s00439-003-1025-2. Epub 2003 Oct 1.
59 Screening of the LIX1 gene in Japanese and Malaysian patients with SMA and/or SMA-like disorder.Brain Dev. 2010 May;32(5):385-9. doi: 10.1016/j.braindev.2009.06.008. Epub 2009 Aug 6.
60 Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons.Brain. 2019 Feb 1;142(2):276-294. doi: 10.1093/brain/awy330.
61 A multi-source approach to determine SMA incidence and research ready population.J Neurol. 2017 Jul;264(7):1465-1473. doi: 10.1007/s00415-017-8549-1. Epub 2017 Jun 20.
62 SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation.Nucleic Acids Res. 2017 May 19;45(9):5399-5413. doi: 10.1093/nar/gkx031.
63 TIA1 is a gender-specific disease modifier of a mild mouse model of spinal muscular atrophy.Sci Rep. 2017 Aug 3;7(1):7183. doi: 10.1038/s41598-017-07468-2.
64 Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity.Eur J Hum Genet. 2013 Sep;21(9):988-93. doi: 10.1038/ejhg.2012.293. Epub 2013 Jan 9.
65 Interventions Targeting Glucocorticoid-Krppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice.EBioMedicine. 2018 May;31:226-242. doi: 10.1016/j.ebiom.2018.04.024. Epub 2018 May 4.
66 Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1.Nat Genet. 2002 Apr;30(4):377-84. doi: 10.1038/ng854. Epub 2002 Mar 4.
67 ASAH1 variant causing a mild SMA phenotype with no myoclonic epilepsy: a clinical, biochemical and molecular study.Eur J Hum Genet. 2016 Nov;24(11):1578-1583. doi: 10.1038/ejhg.2016.28. Epub 2016 Mar 30.
68 SMN deficiency causes pain hypersensitivity in a mild SMA mouse model through enhancing excitability of nociceptive dorsal root ganglion neurons.Sci Rep. 2019 Apr 24;9(1):6493. doi: 10.1038/s41598-019-43053-5.
69 Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. Am J Hum Genet. 2016 Oct 6;99(4):831-845. doi: 10.1016/j.ajhg.2016.08.007. Epub 2016 Sep 15.
70 Extracellular pH change modulates the exon 7 splicing in SMN2 mRNA.Mol Cell Neurosci. 2008 Oct;39(2):268-72. doi: 10.1016/j.mcn.2008.07.002. Epub 2008 Jul 11.
71 Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features.Eur J Hum Genet. 2017 Sep;25(9):1040-1048. doi: 10.1038/ejhg.2017.98. Epub 2017 Jun 21.
72 Normalization of Patient-Identified Plasma Biomarkers in SMN7 Mice following Postnatal SMN Restoration.PLoS One. 2016 Dec 1;11(12):e0167077. doi: 10.1371/journal.pone.0167077. eCollection 2016.
73 Refined physical map of the spinal muscular atrophy gene (SMA) region at 5q13 based on YAC and cosmid contiguous arrays.Genomics. 1995 Apr 10;26(3):451-60. doi: 10.1016/0888-7543(95)80162-f.
74 DYNC1H1 gene methylation correlates with severity of spinal muscular atrophy.Ann Hum Genet. 2019 Mar;83(2):73-81. doi: 10.1111/ahg.12288. Epub 2018 Sep 24.
75 Expression profiling in spinal muscular atrophy reveals an RNA binding protein deficit.Neuromuscul Disord. 2004 Nov;14(11):711-22. doi: 10.1016/j.nmd.2004.08.009.
76 Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein.Genes Dev. 2001 Oct 15;15(20):2720-9. doi: 10.1101/gad.908401.
77 Identification of a Large DNAJB2 Deletion in a Family with Spinal Muscular Atrophy and Parkinsonism.Hum Mutat. 2016 Nov;37(11):1180-1189. doi: 10.1002/humu.23055. Epub 2016 Aug 21.
78 The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.PLoS One. 2009 Dec 4;4(12):e8175. doi: 10.1371/journal.pone.0008175.
79 Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development.Hum Mol Genet. 2018 May 15;27(10):1772-1784. doi: 10.1093/hmg/ddy086.
80 Advances in understanding the role of disease-associated proteins in spinal muscular atrophy.Expert Rev Proteomics. 2017 Jul;14(7):581-592. doi: 10.1080/14789450.2017.1345631. Epub 2017 Jun 30.
81 Restoration of SMN to Emx-1 expressing cortical neurons is not sufficient to provide benefit to a severe mouse model of Spinal Muscular Atrophy.Transgenic Res. 2013 Oct;22(5):1029-36. doi: 10.1007/s11248-013-9702-y. Epub 2013 Mar 20.
82 The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease.Am J Hum Genet. 1997 Jan;60(1):72-9.
83 Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B.Eur J Med Genet. 2020 Apr;63(4):103814. doi: 10.1016/j.ejmg.2019.103814. Epub 2019 Nov 23.
84 Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy.Pharmacol Res. 2016 Sep;111:58-75. doi: 10.1016/j.phrs.2016.05.023. Epub 2016 May 27.
85 Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy.J Neurosci. 2015 Apr 15;35(15):6038-50. doi: 10.1523/JNEUROSCI.3716-14.2015.
86 Gemins modulate the expression and activity of the SMN complex.Hum Mol Genet. 2005 Jun 15;14(12):1605-11. doi: 10.1093/hmg/ddi168. Epub 2005 Apr 20.
87 A role for protein phosphatase PP1 in SMN complex formation and subnuclear localization to Cajal bodies.J Cell Sci. 2012 Jun 15;125(Pt 12):2862-74. doi: 10.1242/jcs.096255. Epub 2012 Mar 27.
88 Do Perineuronal Net Elements Contribute to Pathophysiology of Spinal Muscular Atrophy? In Vitro and Transcriptomics Insights.OMICS. 2018 Sep;22(9):598-606. doi: 10.1089/omi.2018.0106. Epub 2018 Aug 14.
89 Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?.Hum Mol Genet. 2002 Jan 1;11(1):93-105. doi: 10.1093/hmg/11.1.93.
90 The wide spectrum of clinical phenotypes of spinal muscular atrophy with respiratory distress type 1: a systematic review.J Neurol Sci. 2014 Nov 15;346(1-2):35-42. doi: 10.1016/j.jns.2014.09.010. Epub 2014 Sep 16.
91 A missense mutation in the 3-ketodihydrosphingosine reductase FVT1 as candidate causal mutation for bovine spinal muscular atrophy.Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6746-51. doi: 10.1073/pnas.0607721104. Epub 2007 Apr 9.
92 Molecular genetics and mechanisms of disease in distal hereditary motor neuropathies: insights directing future genetic studies.Curr Mol Med. 2011 Nov;11(8):650-65. doi: 10.2174/156652411797536714.
93 Negative cooperativity between Gemin2 and RNA provides insights into RNA selection and the SMN complex's release in snRNP assembly.Nucleic Acids Res. 2020 Jan 24;48(2):895-911. doi: 10.1093/nar/gkz1135.
94 Linkage disequilibrium and haplotype analysis among Polish families with spinal muscular atrophy.Am J Hum Genet. 1995 Jan;56(1):210-5.
95 Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms.Nat Commun. 2018 Feb 13;9(1):651. doi: 10.1038/s41467-018-03045-x.
96 Histone deacetylase inhibition suppresses myogenin-dependent atrogene activation in spinal muscular atrophy mice.Hum Mol Genet. 2012 Oct 15;21(20):4448-59. doi: 10.1093/hmg/dds286. Epub 2012 Jul 13.
97 Genotype-Phenotype Correlation of SMN1 and NAIP Deletions in Korean Patients with Spinal Muscular Atrophy.J Clin Neurol. 2017 Jan;13(1):27-31. doi: 10.3988/jcn.2017.13.1.27. Epub 2016 Oct 7.
98 Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology.J Cell Sci. 2018 Apr 17;131(8):jcs211482. doi: 10.1242/jcs.211482.
99 Neurofilament Heavy Chain and Tau Protein Are Not Elevated in Cerebrospinal Fluid of Adult Patients with Spinal Muscular Atrophy during Loading with Nusinersen.Int J Mol Sci. 2019 Oct 30;20(21):5397. doi: 10.3390/ijms20215397.
100 Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen.J Neurol. 2020 Jan;267(1):36-44. doi: 10.1007/s00415-019-09547-y. Epub 2019 Sep 24.
101 Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect.Hum Mol Genet. 2008 Apr 15;17(8):1063-75. doi: 10.1093/hmg/ddm379. Epub 2008 Jan 4.
102 Abnormalities in early markers of muscle involvement support a delay in myogenesis in spinal muscular atrophy.J Neuropathol Exp Neurol. 2014 Jun;73(6):559-67. doi: 10.1097/NEN.0000000000000078.
103 Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress.Biochem Biophys Res Commun. 2004 Jan 30;314(1):268-76. doi: 10.1016/j.bbrc.2003.12.084.
104 Inhibition of autophagy delays motoneuron degeneration and extends lifespan in a mouse model of spinal muscular atrophy.Cell Death Dis. 2017 Dec 20;8(12):3223. doi: 10.1038/s41419-017-0086-4.
105 YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p.Genomics. 1996 Mar 15;32(3):447-54. doi: 10.1006/geno.1996.0140.
106 Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models.Elife. 2017 May 2;6:e20752. doi: 10.7554/eLife.20752.
107 Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy.Hum Mol Genet. 2016 Jul 15;25(14):2985-2996. doi: 10.1093/hmg/ddw149. Epub 2016 May 18.
108 Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy.Hum Mol Genet. 2001 Mar 1;10(5):497-505. doi: 10.1093/hmg/10.5.497.
109 A homozygous mutation in the SCO2 gene causes a spinal muscular atrophy like presentation with stridor and respiratory insufficiency.Eur J Paediatr Neurol. 2010 May;14(3):253-60. doi: 10.1016/j.ejpn.2009.09.008. Epub 2009 Oct 29.
110 Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina.Eur J Paediatr Neurol. 2016 Nov;20(6):910-917. doi: 10.1016/j.ejpn.2016.07.017. Epub 2016 Jul 28.
111 Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy.Nucleic Acids Res. 2018 Sep 19;46(16):8326-8346. doi: 10.1093/nar/gky641.
112 Fungal Smn and Spf30 homologues are mainly present in filamentous fungi and genomes with many introns: implications for spinal muscular atrophy.Gene. 2012 Jan 10;491(2):135-41. doi: 10.1016/j.gene.2011.10.006. Epub 2011 Oct 13.
113 MicroRNA-125b Promotes Hepatic Stellate Cell Activation and Liver Fibrosis by Activating RhoA Signaling.Mol Ther Nucleic Acids. 2018 Sep 7;12:57-66. doi: 10.1016/j.omtn.2018.04.016. Epub 2018 May 3.
114 Heterozygosity assessment of five STR loci located at 5q13 region for preimplantation genetic diagnosis of spinal muscular atrophy.Mol Biol Rep. 2013 Jan;40(1):67-72. doi: 10.1007/s11033-012-2011-3. Epub 2012 Nov 7.
115 TBCD may be a causal gene in progressive neurodegenerative encephalopathy with atypical infantile spinal muscular atrophy.J Hum Genet. 2017 Apr;62(4):473-480. doi: 10.1038/jhg.2016.149. Epub 2016 Dec 8.
116 Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA.Neurology. 2002 Oct 22;59(8):1197-202. doi: 10.1212/01.wnl.0000028689.93049.9a.
117 Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy.Cell Rep. 2019 Dec 17;29(12):3885-3901.e5. doi: 10.1016/j.celrep.2019.11.058.