General Information of Drug Off-Target (DOT) (ID: OTC0GCQO)

DOT Name Hexokinase-2 (HK2)
Synonyms EC 2.7.1.1; Hexokinase type II; HK II; Hexokinase-B; Muscle form hexokinase
Gene Name HK2
UniProt ID
HXK2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2NZT; 5HEX; 5HFU; 5HG1
EC Number
2.7.1.1
Pfam ID
PF00349 ; PF03727
Sequence
MIASHLLAYFFTELNHDQVQKVDQYLYHMRLSDETLLEISKRFRKEMEKGLGATTHPTAA
VKMLPTFVRSTPDGTEHGEFLALDLGGTNFRVLWVKVTDNGLQKVEMENQIYAIPEDIMR
GSGTQLFDHIAECLANFMDKLQIKDKKLPLGFTFSFPCHQTKLDESFLVSWTKGFKSSGV
EGRDVVALIRKAIQRRGDFDIDIVAVVNDTVGTMMTCGYDDHNCEIGLIVGTGSNACYME
EMRHIDMVEGDEGRMCINMEWGAFGDDGSLNDIRTEFDQEIDMGSLNPGKQLFEKMISGM
YMGELVRLILVKMAKEELLFGGKLSPELLNTGRFETKDISDIEGEKDGIRKAREVLMRLG
LDPTQEDCVATHRICQIVSTRSASLCAATLAAVLQRIKENKGEERLRSTIGVDGSVYKKH
PHFAKRLHKTVRRLVPGCDVRFLRSEDGSGKGAAMVTAVAYRLADQHRARQKTLEHLQLS
HDQLLEVKRRMKVEMERGLSKETHASAPVKMLPTYVCATPDGTEKGDFLALDLGGTNFRV
LLVRVRNGKWGGVEMHNKIYAIPQEVMHGTGDELFDHIVQCIADFLEYMGMKGVSLPLGF
TFSFPCQQNSLDESILLKWTKGFKASGCEGEDVVTLLKEAIHRREEFDLDVVAVVNDTVG
TMMTCGFEDPHCEVGLIVGTGSNACYMEEMRNVELVEGEEGRMCVNMEWGAFGDNGCLDD
FRTEFDVAVDELSLNPGKQRFEKMISGMYLGEIVRNILIDFTKRGLLFRGRISERLKTRG
IFETKFLSQIESDCLALLQVRAILQHLGLESTCDDSIIVKEVCTVVARRAAQLCGAGMAA
VVDRIRENRGLDALKVTVGVDGTLYKLHPHFAKVMHETVKDLAPKCDVSFLQSEDGSGKG
AALITAVACRIREAGQR
Function
Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate. Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis.
Tissue Specificity Predominant hexokinase isozyme expressed in insulin-responsive tissues such as skeletal muscle.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Fructose and mannose metabolism (hsa00051 )
Galactose metabolism (hsa00052 )
Starch and sucrose metabolism (hsa00500 )
Amino sugar and nucleotide sugar metabolism (hsa00520 )
Neomycin, ka.mycin and gentamicin biosynthesis (hsa00524 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of nucleotide sugars (hsa01250 )
HIF-1 sig.ling pathway (hsa04066 )
Insulin sig.ling pathway (hsa04910 )
Type II diabetes mellitus (hsa04930 )
Carbohydrate digestion and absorption (hsa04973 )
Shigellosis (hsa05131 )
Central carbon metabolism in cancer (hsa05230 )
Reactome Pathway
Glycolysis (R-HSA-70171 )
BioCyc Pathway
MetaCyc:HS08399-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Josamycin DMKJ8LB Approved Hexokinase-2 (HK2) decreases the response to substance of Josamycin. [42]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Hexokinase-2 (HK2). [1]
------------------------------------------------------------------------------------
44 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Hexokinase-2 (HK2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Hexokinase-2 (HK2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Hexokinase-2 (HK2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Hexokinase-2 (HK2). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Hexokinase-2 (HK2). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Hexokinase-2 (HK2). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Hexokinase-2 (HK2). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the activity of Hexokinase-2 (HK2). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Hexokinase-2 (HK2). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Hexokinase-2 (HK2). [11]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Hexokinase-2 (HK2). [4]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Hexokinase-2 (HK2). [12]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Hexokinase-2 (HK2). [13]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Hexokinase-2 (HK2). [14]
Imatinib DM7RJXL Approved Imatinib decreases the expression of Hexokinase-2 (HK2). [15]
Clotrimazole DMMFCIH Approved Clotrimazole decreases the expression of Hexokinase-2 (HK2). [15]
Epinephrine DM3KJBC Approved Epinephrine increases the expression of Hexokinase-2 (HK2). [16]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Hexokinase-2 (HK2). [17]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Hexokinase-2 (HK2). [18]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Hexokinase-2 (HK2). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Hexokinase-2 (HK2). [20]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Hexokinase-2 (HK2). [21]
FG-4592 DM4XSQ2 Phase 3 FG-4592 increases the expression of Hexokinase-2 (HK2). [22]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Hexokinase-2 (HK2). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Hexokinase-2 (HK2). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Hexokinase-2 (HK2). [24]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Hexokinase-2 (HK2). [25]
LY294002 DMY1AFS Phase 1 LY294002 decreases the expression of Hexokinase-2 (HK2). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Hexokinase-2 (HK2). [27]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Hexokinase-2 (HK2). [28]
UNC0379 DMD1E4J Preclinical UNC0379 decreases the expression of Hexokinase-2 (HK2). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Hexokinase-2 (HK2). [30]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Hexokinase-2 (HK2). [31]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Hexokinase-2 (HK2). [32]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Hexokinase-2 (HK2). [33]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Hexokinase-2 (HK2). [34]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Hexokinase-2 (HK2). [35]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Hexokinase-2 (HK2). [36]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Hexokinase-2 (HK2). [37]
Rapamycin Immunosuppressant Drug DM678IB Investigative Rapamycin Immunosuppressant Drug decreases the expression of Hexokinase-2 (HK2). [21]
PP-242 DM2348V Investigative PP-242 decreases the expression of Hexokinase-2 (HK2). [38]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Hexokinase-2 (HK2). [39]
DZNep DM0JXBK Investigative DZNep decreases the expression of Hexokinase-2 (HK2). [40]
2-(carboxymethylamino)-2-oxoacetic acid DMQ2SNL Investigative 2-(carboxymethylamino)-2-oxoacetic acid increases the expression of Hexokinase-2 (HK2). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med. 2006 Apr;47(4):603-8.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Ivermectin accelerates autophagic death of glioma cells by inhibiting glycolysis through blocking GLUT4 mediated JAK/STAT signaling pathway activation. Environ Toxicol. 2022 Apr;37(4):754-764. doi: 10.1002/tox.23440. Epub 2021 Dec 14.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15084-9. doi: 10.1073/pnas.1521316112. Epub 2015 Nov 23.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia. 2005 Jan;48(1):83-95. doi: 10.1007/s00125-004-1619-9. Epub 2004 Dec 24.
13 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
14 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
15 Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells. Chem Biol Interact. 2015 May 25;233:147-56. doi: 10.1016/j.cbi.2015.03.028. Epub 2015 Apr 8.
16 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
19 Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochem Pharmacol. 2006 Nov 15;72(10):1246-56. doi: 10.1016/j.bcp.2006.08.009. Epub 2006 Sep 15.
20 Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Mutat Res. 2005 Dec 11;591(1-2):198-211.
21 Inhibition of ATF4-mediated elevation of both autophagy and AKT/mTOR was involved in antitumorigenic activity of curcumin. Food Chem Toxicol. 2023 Mar;173:113609. doi: 10.1016/j.fct.2023.113609. Epub 2023 Jan 12.
22 Lactate released from human fibroblasts enhances Ni elution from Ni plate. Toxicology. 2021 Apr 15;453:152723. doi: 10.1016/j.tox.2021.152723. Epub 2021 Feb 14.
23 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
24 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
25 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
26 The anti-MDR efficacy of YAN against A549/Taxol cells is associated with its inhibition on glycolysis and is further enhanced by 2-deoxy-d-glucose. Chem Biol Interact. 2022 Feb 25;354:109843. doi: 10.1016/j.cbi.2022.109843. Epub 2022 Feb 2.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
29 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
30 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
31 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
32 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
33 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
34 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
35 Ochratoxin A induces reprogramming of glucose metabolism by switching energy metabolism from oxidative phosphorylation to glycolysis in human gastric epithelium GES-1 cells in vitro. Toxicol Lett. 2020 Oct 15;333:232-241. doi: 10.1016/j.toxlet.2020.08.008. Epub 2020 Aug 22.
36 Effects of nickel treatment on H3K4 trimethylation and gene expression. PLoS One. 2011 Mar 24;6(3):e17728. doi: 10.1371/journal.pone.0017728.
37 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
38 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
39 Combined cytotoxicity of phthalate esters on HepG2 cells: A comprehensive analysis of transcriptomics and metabolomics. Food Chem Toxicol. 2023 Oct;180:114034. doi: 10.1016/j.fct.2023.114034. Epub 2023 Sep 12.
40 S-adenosylhomocysteine (AdoHcy)-dependent methyltransferase inhibitor DZNep overcomes breast cancer tamoxifen resistance via induction of NSD2 degradation and suppression of NSD2-driven redox homeostasis. Chem Biol Interact. 2020 Feb 1;317:108965. doi: 10.1016/j.cbi.2020.108965. Epub 2020 Jan 28.
41 Vulnerability of HIF1 and HIF2 to damage by proteotoxic stressors. Toxicol Appl Pharmacol. 2022 Jun 15;445:116041. doi: 10.1016/j.taap.2022.116041. Epub 2022 Apr 30.
42 A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020 Feb 14;295(7):2057-2067. doi: 10.1074/jbc.RA119.010770. Epub 2020 Jan 8.