General Information of Drug Off-Target (DOT) (ID: OTCZQY1U)

DOT Name Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3)
Gene Name CHRNA3
Related Disease
Neoplasm ( )
Advanced cancer ( )
Alcohol dependence ( )
Alcohol use disorder ( )
Alpha-1 antitrypsin deficiency ( )
Alzheimer disease ( )
Attention deficit hyperactivity disorder ( )
Autosomal dominant nocturnal frontal lobe epilepsy ( )
Carcinoma of esophagus ( )
Chronic bronchitis ( )
Cocaine addiction ( )
Congenital anomaly of kidney and urinary tract ( )
Dysautonomia ( )
Esophageal cancer ( )
Gastric cancer ( )
Hepatocellular carcinoma ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung squamous cell carcinoma ( )
Nasopharyngeal carcinoma ( )
Neoplasm of esophagus ( )
Non-small-cell lung cancer ( )
Obesity ( )
Peripheral arterial disease ( )
Pulmonary emphysema ( )
Stomach cancer ( )
Ulcerative colitis ( )
High blood pressure ( )
Lung neoplasm ( )
Schizophrenia ( )
Squamous cell carcinoma ( )
Coronary heart disease ( )
Nicotine dependence ( )
Neuroblastoma ( )
UniProt ID
ACHA3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4ZK4; 5SYO; 5TVC; 6PV7; 6PV8
Pfam ID
PF02931 ; PF02932
Sequence
MGSGPLSLPLALSPPRLLLLLLLSLLPVARASEAEHRLFERLFEDYNEIIRPVANVSDPV
IIHFEVSMSQLVKVDEVNQIMETNLWLKQIWNDYKLKWNPSDYGGAEFMRVPAQKIWKPD
IVLYNNAVGDFQVDDKTKALLKYTGEVTWIPPAIFKSSCKIDVTYFPFDYQNCTMKFGSW
SYDKAKIDLVLIGSSMNLKDYWESGEWAIIKAPGYKHDIKYNCCEEIYPDITYSLYIRRL
PLFYTINLIIPCLLISFLTVLVFYLPSDCGEKVTLCISVLLSLTVFLLVITETIPSTSLV
IPLIGEYLLFTMIFVTLSIVITVFVLNVHYRTPTTHTMPSWVKTVFLNLLPRVMFMTRPT
SNEGNAQKPRPLYGAELSNLNCFSRAESKGCKEGYPCQDGMCGYCHHRRIKISNFSANLT
RSSSSESVDAVLSLSALSPEIKEAIQSVKYIAENMKAQNEAKEIQDDWKYVAMVIDRIFL
WVFTLVCILGTAGLFLQPLMAREDA
Function After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Cholinergic sy.pse (hsa04725 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
Highly calcium permeable postsynaptic nicotinic acetylcholine receptors (R-HSA-629594 )
Highly calcium permeable nicotinic acetylcholine receptors (R-HSA-629597 )
Highly sodium permeable postsynaptic acetylcholine nicotinic receptors (R-HSA-629587 )

Molecular Interaction Atlas (MIA) of This DOT

35 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Genetic Variation [2]
Alcohol dependence DIS4ZSCO Strong Genetic Variation [3]
Alcohol use disorder DISMB65Y Strong Biomarker [4]
Alpha-1 antitrypsin deficiency DISQKEHW Strong Biomarker [5]
Alzheimer disease DISF8S70 Strong Genetic Variation [6]
Attention deficit hyperactivity disorder DISL8MX9 Strong Genetic Variation [7]
Autosomal dominant nocturnal frontal lobe epilepsy DISE3C4O Strong Biomarker [8]
Carcinoma of esophagus DISS6G4D Strong Biomarker [9]
Chronic bronchitis DISS8O8V Strong Genetic Variation [10]
Cocaine addiction DISHTRXG Strong Genetic Variation [3]
Congenital anomaly of kidney and urinary tract DIS84IVH Strong Genetic Variation [11]
Dysautonomia DISF4MT6 Strong Genetic Variation [11]
Esophageal cancer DISGB2VN Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Posttranslational Modification [12]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Lung adenocarcinoma DISD51WR Strong Altered Expression [14]
Lung cancer DISCM4YA Strong Genetic Variation [15]
Lung carcinoma DISTR26C Strong Genetic Variation [15]
Lung squamous cell carcinoma DISXPIBD Strong Genetic Variation [16]
Nasopharyngeal carcinoma DISAOTQ0 Strong Genetic Variation [17]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [9]
Non-small-cell lung cancer DIS5Y6R9 Strong Genetic Variation [18]
Obesity DIS47Y1K Strong Genetic Variation [19]
Peripheral arterial disease DIS78WFB Strong Genetic Variation [2]
Pulmonary emphysema DIS5M7HZ Strong Biomarker [20]
Stomach cancer DISKIJSX Strong Posttranslational Modification [12]
Ulcerative colitis DIS8K27O Strong Genetic Variation [21]
High blood pressure DISY2OHH moderate Genetic Variation [22]
Lung neoplasm DISVARNB moderate Biomarker [23]
Schizophrenia DISSRV2N moderate Genetic Variation [24]
Squamous cell carcinoma DISQVIFL moderate Genetic Variation [25]
Coronary heart disease DIS5OIP1 Disputed Genetic Variation [26]
Nicotine dependence DISZD9W7 Disputed Genetic Variation [27]
Neuroblastoma DISVZBI4 Limited Altered Expression [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [29]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [30]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [31]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [32]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [33]
Nicotine DMWX5CO Approved Nicotine decreases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [34]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [35]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [35]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [37]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [39]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Neuronal acetylcholine receptor subunit alpha-3 (CHRNA3). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Association of the CHRNA3 locus with lung cancer risk and prognosis in Chinese Han population.J Thorac Oncol. 2010 May;5(5):658-66. doi: 10.1097/JTO.0b013e3181d5e447.
2 Gene variance in the nicotinic receptor cluster (CHRNA5-CHRNA3-CHRNB4) predicts death from cardiopulmonary disease and cancer in smokers.J Intern Med. 2016 Apr;279(4):388-98. doi: 10.1111/joim.12454. Epub 2015 Dec 22.
3 Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence.Hum Mol Genet. 2014 Feb 1;23(3):810-9. doi: 10.1093/hmg/ddt463. Epub 2013 Sep 20.
4 Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence.Mol Psychiatry. 2009 May;14(5):501-10. doi: 10.1038/mp.2008.42. Epub 2008 Apr 15.
5 Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency.Respir Res. 2012 Feb 22;13(1):16. doi: 10.1186/1465-9921-13-16.
6 Association of novel and established polymorphisms in neuronal nicotinic acetylcholine receptors with sporadic Alzheimer's disease.J Alzheimers Dis. 2002 Apr;4(2):71-6. doi: 10.3233/jad-2002-4201.
7 Pleiotropic effects of Chr15q25 nicotinic gene cluster and the relationship between smoking, cognition and ADHD.J Psychiatr Res. 2016 Sep;80:73-78. doi: 10.1016/j.jpsychires.2016.06.002. Epub 2016 Jun 4.
8 Refined mapping of CHRNA3/A5/B4 gene cluster and its implications in ADNFLE.Neuroreport. 2000 Jul 14;11(10):2097-101. doi: 10.1097/00001756-200007140-00008.
9 Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC).PLoS One. 2014 Mar 12;9(3):e90836. doi: 10.1371/journal.pone.0090836. eCollection 2014.
10 Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease.Respir Res. 2014 Sep 21;15(1):113. doi: 10.1186/s12931-014-0113-2.
11 CAKUT and Autonomic Dysfunction Caused by Acetylcholine Receptor Mutations.Am J Hum Genet. 2019 Dec 5;105(6):1286-1293. doi: 10.1016/j.ajhg.2019.10.004. Epub 2019 Nov 7.
12 Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).Cancer Lett. 2011 Dec 1;311(1):85-95. doi: 10.1016/j.canlet.2011.06.038. Epub 2011 Jul 14.
13 Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake.J Hepatol. 2011 Apr;54(4):705-15. doi: 10.1016/j.jhep.2010.07.027. Epub 2010 Sep 25.
14 CHRNA3 polymorphism modifies lung adenocarcinoma risk in the Chinese Han population.Int J Mol Sci. 2014 Mar 28;15(4):5446-57. doi: 10.3390/ijms15045446.
15 Association Between Nicotine-dependent Gene Polymorphism and Smoking Cessation in Patients With Lung Cancer.Clin Lung Cancer. 2020 Mar;21(2):171-176. doi: 10.1016/j.cllc.2019.07.002. Epub 2019 Jul 17.
16 Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.Nat Genet. 2017 Jul;49(7):1126-1132. doi: 10.1038/ng.3892. Epub 2017 Jun 12.
17 Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand.Cancer Causes Control. 2012 Dec;23(12):1995-2002. doi: 10.1007/s10552-012-0077-9. Epub 2012 Oct 21.
18 Study on polymorphisms in CHRNA5/CHRNA3/CHRNB4 gene cluster and the associated with the risk of non-small cell lung cancer.Oncotarget. 2017 Dec 20;9(2):2435-2444. doi: 10.18632/oncotarget.23459. eCollection 2018 Jan 5.
19 Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium.BMJ Open. 2015 Aug 11;5(8):e008808. doi: 10.1136/bmjopen-2015-008808.
20 CHRNA3 variant for lung cancer is associated with chronic obstructive pulmonary disease in Korea.Respiration. 2013;86(2):117-22. doi: 10.1159/000342976. Epub 2012 Nov 27.
21 Relationship between CYP2A6 genetic polymorphism, as a marker of nicotine metabolism, and ulcerative colitis.Isr Med Assoc J. 2011 Feb;13(2):87-90.
22 CHRNA3 rs6495308 genotype as an effect modifier of the association between daily cigarette consumption and hypertension in Chinese male smokers.Int J Environ Res Public Health. 2015 Apr 14;12(4):4156-69. doi: 10.3390/ijerph120404156.
23 Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.Nat Genet. 2008 May;40(5):616-22. doi: 10.1038/ng.109. Epub 2008 Apr 2.
24 Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect.Schizophr Bull. 2019 Jun 18;45(4):824-834. doi: 10.1093/schbul/sby140.
25 Association of smoking with tumor size at diagnosis in non-small cell lung cancer.Lung Cancer. 2011 Dec;74(3):378-83. doi: 10.1016/j.lungcan.2011.04.020. Epub 2011 Jun 8.
26 Identifying genetic variants that affect viability in large cohorts.PLoS Biol. 2017 Sep 5;15(9):e2002458. doi: 10.1371/journal.pbio.2002458. eCollection 2017 Sep.
27 Cholinergic receptor nicotinic alpha 5 subunit polymorphisms are associated with smoking cessation success in women.BMC Med Genet. 2018 Apr 5;19(1):55. doi: 10.1186/s12881-018-0571-3.
28 Minimal residual disease monitoring in neuroblastoma patients based on the expression of a set of real-time RT-PCR markers in tumor-initiating cells.Oncol Rep. 2013 Apr;29(4):1629-36. doi: 10.3892/or.2013.2286. Epub 2013 Feb 12.
29 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
30 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
31 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
32 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
33 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
34 Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sci. 2003 Mar 28;72(18-19):2155-8. doi: 10.1016/s0024-3205(03)00077-8.
35 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
36 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
39 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
40 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.