General Information of Drug Off-Target (DOT) (ID: OTSLZBVY)

DOT Name Tyrosine-protein phosphatase non-receptor type 3 (PTPN3)
Synonyms EC 3.1.3.48; Protein-tyrosine phosphatase H1; PTP-H1
Gene Name PTPN3
Related Disease
Acromegaly ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Cholangiocarcinoma ( )
Colorectal carcinoma ( )
Gastric adenocarcinoma ( )
Gastric cancer ( )
Glioma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Skin cancer ( )
Stomach cancer ( )
Triple negative breast cancer ( )
Basal cell nevus syndrome ( )
Intrahepatic cholangiocarcinoma ( )
Adult glioblastoma ( )
Colon cancer ( )
Colon carcinoma ( )
Glioblastoma multiforme ( )
Schizophrenia ( )
UniProt ID
PTN3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2B49; 4QUM; 4QUN; 4RH5; 4RH9; 4RHG; 4RI4; 4RI5; 4S0G; 6HKS; 6T36; 8CQY; 8OEP
EC Number
3.1.3.48
Pfam ID
PF09380 ; PF00373 ; PF09379 ; PF00595 ; PF00102
Sequence
MTSRLRALGGRINNIRTSELPKEKTRSEVICSIHFLDGVVQTFKVTKQDTGQVLLDMVHN
HLGVTEKEYFGLQHDDDSVDSPRWLEASKAIRKQLKGGFPCTLHFRVRFFIPDPNTLQQE
QTRHLYFLQLKMDICEGRLTCPLNSAVVLASYAVQSHFGDYNSSIHHPGYLSDSHFIPDQ
NEDFLTKVESLHEQHSGLKQSEAESCYINIARTLDFYGVELHSGRDLHNLDLMIGIASAG
VAVYRKYICTSFYPWVNILKISFKRKKFFIHQRQKQAESREHIVAFNMLNYRSCKNLWKS
CVEHHTFFQAKKLLPQEKNVLSQYWTMGSRNTKKSVNNQYCKKVIGGMVWNPAMRRSLSV
EHLETKSLPSRSPPITPNWRSPRLRHEIRKPRHSSADNLANEMTYITETEDVFYTYKGSL
APQDSDSEVSQNRSPHQESLSENNPAQSYLTQKSSSSVSPSSNAPGSCSPDGVDQQLLDD
FHRVTKGGSTEDASQYYCDKNDNGDSYLVLIRITPDEDGKFGFNLKGGVDQKMPLVVSRI
NPESPADTCIPKLNEGDQIVLINGRDISEHTHDQVVMFIKASRESHSRELALVIRRRAVR
SFADFKSEDELNQLFPEAIFPMCPEGGDTLEGSMAQLKKGLESGTVLIQFEQLYRKKPGL
AITFAKLPQNLDKNRYKDVLPYDTTRVLLQGNEDYINASYVNMEIPAANLVNKYIATQGP
LPHTCAQFWQVVWDQKLSLIVMLTTLTERGRTKCHQYWPDPPDVMNHGGFHIQCQSEDCT
IAYVSREMLVTNTQTGEEHTVTHLQYVAWPDHGVPDDSSDFLEFVNYVRSLRVDSEPVLV
HCSAGIGRTGVLVTMETAMCLTERNLPIYPLDIVRKMRDQRAMMVQTSSQYKFVCEAILR
VYEEGLVQMLDPS
Function May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity.
Reactome Pathway
Negative regulation of MAPK pathway (R-HSA-5675221 )
EGFR downregulation (R-HSA-182971 )

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acromegaly DISCC73U Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Posttranslational Modification [2]
Breast cancer DIS7DPX1 Strong Posttranslational Modification [2]
Breast carcinoma DIS2UE88 Strong Posttranslational Modification [2]
Cholangiocarcinoma DIS71F6X Strong Altered Expression [3]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [2]
Gastric adenocarcinoma DISWWLTC Strong Biomarker [4]
Gastric cancer DISXGOUK Strong Biomarker [5]
Glioma DIS5RPEH Strong Genetic Variation [2]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [6]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [6]
Lung cancer DISCM4YA Strong Biomarker [7]
Lung carcinoma DISTR26C Strong Biomarker [7]
Lung neoplasm DISVARNB Strong Biomarker [8]
Neoplasm DISZKGEW Strong Biomarker [9]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [8]
Skin cancer DISTM18U Strong Altered Expression [10]
Stomach cancer DISKIJSX Strong Biomarker [5]
Triple negative breast cancer DISAMG6N Strong Biomarker [11]
Basal cell nevus syndrome DIST8BC2 moderate Biomarker [12]
Intrahepatic cholangiocarcinoma DIS6GOC8 moderate Genetic Variation [13]
Adult glioblastoma DISVP4LU Limited Altered Expression [4]
Colon cancer DISVC52G Limited Genetic Variation [2]
Colon carcinoma DISJYKUO Limited Genetic Variation [2]
Glioblastoma multiforme DISK8246 Limited Altered Expression [4]
Schizophrenia DISSRV2N No Known Unknown [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [15]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [33]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [34]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [33]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [16]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [17]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [18]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [20]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [22]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [23]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [17]
Triclosan DMZUR4N Approved Triclosan increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [24]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [25]
Ethanol DMDRQZU Approved Ethanol increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [26]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [27]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [28]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [29]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [30]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [31]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [32]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [35]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [36]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE decreases the expression of Tyrosine-protein phosphatase non-receptor type 3 (PTPN3). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Gene Expression Signature in Adipose Tissue of Acromegaly Patients.PLoS One. 2015 Jun 18;10(6):e0129359. doi: 10.1371/journal.pone.0129359. eCollection 2015.
2 PTPH1 immunohistochemical expression and promoter methylation in breast cancer patients from India: A retrospective study.J Cell Physiol. 2019 Feb;234(2):1071-1079. doi: 10.1002/jcp.27211. Epub 2018 Sep 6.
3 Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.Gastroenterology. 2014 May;146(5):1397-407. doi: 10.1053/j.gastro.2014.01.062. Epub 2014 Feb 4.
4 High Expression of PTPN3 Predicts Progression and Unfavorable Prognosis of Glioblastoma.Med Sci Monit. 2018 Oct 23;24:7556-7562. doi: 10.12659/MSM.911531.
5 PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma.Anticancer Res. 2006 Mar-Apr;26(2B):1643-9.
6 Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3.J Biomed Sci. 2007 Nov;14(6):731-44. doi: 10.1007/s11373-007-9187-x. Epub 2007 Jun 24.
7 PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization.Oncogene. 2019 Oct;38(44):7002-7016. doi: 10.1038/s41388-019-0948-6. Epub 2019 Aug 12.
8 Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation.Oncogene. 2015 Jul;34(29):3791-803. doi: 10.1038/onc.2014.312. Epub 2014 Sep 29.
9 PTPN3 suppresses the proliferation and correlates with favorable prognosis of perihilar cholangiocarcinoma by inhibiting AKT phosphorylation.Biomed Pharmacother. 2020 Jan;121:109583. doi: 10.1016/j.biopha.2019.109583. Epub 2019 Nov 6.
10 The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene.Cells. 2019 Mar 14;8(3):244. doi: 10.3390/cells8030244.
11 NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest.Oncogenesis. 2018 May 25;7(5):42. doi: 10.1038/s41389-018-0051-9.
12 Expression and chromosomal assignment of PTPH1 gene encoding a cytosolic protein tyrosine phosphatase homologous to cytoskeletal-associated proteins.Int J Cancer. 1993 Dec 2;55(6):947-51. doi: 10.1002/ijc.2910550612.
13 PTPN3 acts as a tumor suppressor and boosts TGF- signaling independent of its phosphatase activity.EMBO J. 2019 Jul 15;38(14):e99945. doi: 10.15252/embj.201899945. Epub 2019 Jun 14.
14 De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014 Feb 13;506(7487):179-84. doi: 10.1038/nature12929. Epub 2014 Jan 22.
15 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
16 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
17 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
18 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
24 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
25 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
26 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
27 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
28 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
29 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
30 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
31 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
32 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
33 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
34 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
35 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
36 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.