General Information of Drug Off-Target (DOT) (ID: OT0GGRDO)

DOT Name Squalene monooxygenase (SQLE)
Synonyms EC 1.14.14.17; Squalene epoxidase; SE
Gene Name SQLE
UniProt ID
ERG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6C6N; 6C6P; 6C6R
EC Number
1.14.14.17
Pfam ID
PF13450 ; PF08491
Sequence
MWTFLGIATFTYFYKKFGDFITLANREVLLCVLVFLSLGLVLSYRCRHRNGGLLGRQQSG
SQFALFSDILSGLPFIGFFWAKSPPESENKEQLEARRRRKGTNISETSLIGTAACTSTSS
QNDPEVIIVGAGVLGSALAAVLSRDGRKVTVIERDLKEPDRIVGEFLQPGGYHVLKDLGL
GDTVEGLDAQVVNGYMIHDQESKSEVQIPYPLSENNQVQSGRAFHHGRFIMSLRKAAMAE
PNAKFIEGVVLQLLEEDDVVMGVQYKDKETGDIKELHAPLTVVADGLFSKFRKSLVSNKV
SVSSHFVGFLMKNAPQFKANHAELILANPSPVLIYQISSSETRVLVDIRGEMPRNLREYM
VEKIYPQIPDHLKEPFLEATDNSHLRSMPASFLPPSSVKKRGVLLLGDAYNMRHPLTGGG
MTVAFKDIKLWRKLLKGIPDLYDDAAIFEAKKSFYWARKTSHSFVVNILAQALYELFSAT
DDSLHQLRKACFLYFKLGGECVAGPVGLLSVLSPNPLVLIGHFFAVAIYAVYFCFKSEPW
ITKPRALLSSGAVLYKACSVIFPLIYSEMKYMVH
Function Catalyzes the stereospecific oxidation of squalene to (S)-2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis.
Tissue Specificity Detected in liver (at protein level).
KEGG Pathway
Steroid biosynthesis (hsa00100 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
Cholesterol biosynthesis (R-HSA-191273 )
BioCyc Pathway
MetaCyc:HS02595-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Squalene monooxygenase (SQLE) affects the response to substance of Temozolomide. [35]
DTI-015 DMXZRW0 Approved Squalene monooxygenase (SQLE) affects the response to substance of DTI-015. [35]
------------------------------------------------------------------------------------
38 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Squalene monooxygenase (SQLE). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Squalene monooxygenase (SQLE). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Squalene monooxygenase (SQLE). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Squalene monooxygenase (SQLE). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Squalene monooxygenase (SQLE). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Squalene monooxygenase (SQLE). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Squalene monooxygenase (SQLE). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Squalene monooxygenase (SQLE). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Squalene monooxygenase (SQLE). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Squalene monooxygenase (SQLE). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Squalene monooxygenase (SQLE). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Squalene monooxygenase (SQLE). [12]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Squalene monooxygenase (SQLE). [5]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Squalene monooxygenase (SQLE). [13]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Squalene monooxygenase (SQLE). [14]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Squalene monooxygenase (SQLE). [15]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Squalene monooxygenase (SQLE). [16]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Squalene monooxygenase (SQLE). [18]
Racecadotril DMFOTZ7 Approved Racecadotril increases the expression of Squalene monooxygenase (SQLE). [19]
Isoflavone DM7U58J Phase 4 Isoflavone affects the expression of Squalene monooxygenase (SQLE). [20]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Squalene monooxygenase (SQLE). [11]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Squalene monooxygenase (SQLE). [21]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Squalene monooxygenase (SQLE). [21]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Squalene monooxygenase (SQLE). [23]
GSK618334 DMJPXZ4 Phase 1 GSK618334 increases the expression of Squalene monooxygenase (SQLE). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Squalene monooxygenase (SQLE). [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Squalene monooxygenase (SQLE). [4]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Squalene monooxygenase (SQLE). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Squalene monooxygenase (SQLE). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Squalene monooxygenase (SQLE). [27]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Squalene monooxygenase (SQLE). [28]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Squalene monooxygenase (SQLE). [29]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Squalene monooxygenase (SQLE). [30]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Squalene monooxygenase (SQLE). [31]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of Squalene monooxygenase (SQLE). [19]
PP-242 DM2348V Investigative PP-242 decreases the expression of Squalene monooxygenase (SQLE). [32]
Rutin DMEHRAJ Investigative Rutin increases the expression of Squalene monooxygenase (SQLE). [33]
Linalool DMGZQ5P Investigative Linalool increases the expression of Squalene monooxygenase (SQLE). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 38 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Simvastatin DM30SGU Approved Simvastatin decreases the degradation of Squalene monooxygenase (SQLE). [17]
ANW-32821 DMMJOZD Phase 2 ANW-32821 increases the degradation of Squalene monooxygenase (SQLE). [17]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Squalene monooxygenase (SQLE). [22]
------------------------------------------------------------------------------------

References

1 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression changes associated with cytotoxicity identified using cDNA arrays. Funct Integr Genomics. 2000 Sep;1(2):114-26.
5 Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 2004 Jun 15;64(12):4218-26.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
10 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
13 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
14 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
15 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
16 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
17 Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem. 2019 Feb 15;294(7):2436-2448. doi: 10.1074/jbc.RA118.005069. Epub 2018 Dec 13.
18 Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep. 2023 Jun 29;13(1):10519. doi: 10.1038/s41598-023-37488-0.
19 Successful validation of genomic biomarkers for human immunotoxicity in Jurkat T cells in vitro. J Appl Toxicol. 2015 Jul;35(7):831-41.
20 Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J Nutr. 2006 Jan;136(1):75-82.
21 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
22 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
27 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
28 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
29 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
30 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
31 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
32 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
33 Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer. J Pharm Pharmacol. 2023 Jul 5;75(7):951-968. doi: 10.1093/jpp/rgad035.
34 Linalool is a PPARalpha ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014 Jun;55(6):1098-110.
35 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.