General Information of Drug Off-Target (DOT) (ID: OT0YAMC0)

DOT Name Neuropilin and tolloid-like protein 2 (NETO2)
Synonyms Brain-specific transmembrane protein containing 2 CUB and 1 LDL-receptor class A domains protein 2
Gene Name NETO2
Related Disease
Advanced cancer ( )
Carcinoma ( )
Gastric cancer ( )
Neoplasm ( )
Pancreatic cancer ( )
Stomach cancer ( )
Nasopharyngeal carcinoma ( )
UniProt ID
NETO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00431 ; PF00057
Sequence
MALERLCSVLKVLLITVLVVEGIAVAQKTQDGQNIGIKHIPATQCGIWVRTSNGGHFASP
NYPDSYPPNKECIYILEAAPRQRIELTFDEHYYIEPSFECRFDHLEVRDGPFGFSPLIDR
YCGVKSPPLIRSTGRFMWIKFSSDEELEGLGFRAKYSFIPDPDFTYLGGILNPIPDCQFE
LSGADGIVRSSQVEQEEKTKPGQAVDCIWTIKATPKAKIYLRFLDYQMEHSNECKRNFVA
VYDGSSSIENLKAKFCSTVANDVMLKTGIGVIRMWADEGSRLSRFRMLFTSFVEPPCTSS
TFFCHSNMCINNSLVCNGVQNCAYPWDENHCKEKKKAGVFEQITKTHGTIIGITSGIVLV
LLIISILVQVKQPRKKVMACKTAFNKTGFQEVFDPPHYELFSLRDKEISADLADLSEELD
NYQKMRRSSTASRCIHDHHCGSQASSVKQSRTNLSSMELPFRNDFAQPQPMKTFNSTFKK
SSYTFKQGHECPEQALEDRVMEEIPCEIYVRGREDSAQASISIDF
Function
Accessory subunit of neuronal kainate-sensitive glutamate receptors, GRIK2 and GRIK3. Increases kainate-receptor channel activity, slowing the decay kinetics of the receptors, without affecting their expression at the cell surface, and increasing the open probability of the receptor channels. Modulates the agonist sensitivity of kainate receptors. Slows the decay of kainate receptor-mediated excitatory postsynaptic currents (EPSCs), thus directly influencing synaptic transmission.

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Carcinoma DISH9F1N moderate Altered Expression [2]
Gastric cancer DISXGOUK moderate Altered Expression [2]
Neoplasm DISZKGEW moderate Altered Expression [2]
Pancreatic cancer DISJC981 moderate Biomarker [3]
Stomach cancer DISKIJSX moderate Altered Expression [2]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Neuropilin and tolloid-like protein 2 (NETO2) affects the response to substance of Fluorouracil. [26]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Neuropilin and tolloid-like protein 2 (NETO2). [5]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the acetylation of Neuropilin and tolloid-like protein 2 (NETO2). [25]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [7]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [10]
Quercetin DM3NC4M Approved Quercetin increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [11]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Neuropilin and tolloid-like protein 2 (NETO2). [14]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [15]
Cocaine DMSOX7I Approved Cocaine increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [16]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [17]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [17]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [20]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [22]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [23]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Neuropilin and tolloid-like protein 2 (NETO2). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Upregulation of NETO2 gene in colorectal cancer.BMC Genet. 2017 Dec 28;18(Suppl 1):117. doi: 10.1186/s12863-017-0581-8.
2 NETO2 promotes invasion and metastasis of gastric cancer cells via activation of PI3K/Akt/NF-B/Snail axis and predicts outcome of the patients.Cell Death Dis. 2019 Feb 15;10(3):162. doi: 10.1038/s41419-019-1388-5.
3 NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway.Cancer Manag Res. 2019 Jun 6;11:5147-5156. doi: 10.2147/CMAR.S204260. eCollection 2019.
4 Reducing NETO2 expression prevents human nasopharyngeal carcinoma (NPC) progression by suppressing metastasis and inducingapoptosis.Biochem Biophys Res Commun. 2019 May 28;513(2):494-501. doi: 10.1016/j.bbrc.2019.03.061. Epub 2019 Apr 8.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
7 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
8 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
14 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
15 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
16 Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004 Mar;88(5):1211-9. doi: 10.1046/j.1471-4159.2003.02247.x.
17 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
22 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
25 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
26 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.