General Information of Drug Off-Target (DOT) (ID: OT12MSRY)

DOT Name M-phase inducer phosphatase 2 (CDC25B)
Synonyms EC 3.1.3.48; Dual specificity phosphatase Cdc25B
Gene Name CDC25B
UniProt ID
MPIP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CWR; 1CWS; 1CWT; 1QB0; 1YM9; 1YMD; 1YMK; 1YML; 1YS0; 2A2K; 2IFD; 2IFV; 2UZQ; 3FQT; 3FQU; 4WH7; 4WH9
EC Number
3.1.3.48
Pfam ID
PF06617 ; PF00581
Sequence
MEVPQPEPAPGSALSPAGVCGGAQRPGHLPGLLLGSHGLLGSPVRAAASSPVTTLTQTMH
DLAGLGSETPKSQVGTLLFRSRSRLTHLSLSRRASESSLSSESSESSDAGLCMDSPSPMD
PHMAEQTFEQAIQAASRIIRNEQFAIRRFQSMPVRLLGHSPVLRNITNSQAPDGRRKSEA
GSGAASSSGEDKENDGFVFKMPWKPTHPSSTHALAEWASRREAFAQRPSSAPDLMCLSPD
RKMEVEELSPLALGRFSLTPAEGDTEEDDGFVDILESDLKDDDAVPPGMESLISAPLVKT
LEKEEEKDLVMYSKCQRLFRSPSMPCSVIRPILKRLERPQDRDTPVQNKRRRSVTPPEEQ
QEAEEPKARVLRSKSLCHDEIENLLDSDHRELIGDYSKAFLLQTVDGKHQDLKYISPETM
VALLTGKFSNIVDKFVIVDCRYPYEYEGGHIKTAVNLPLERDAESFLLKSPIAPCSLDKR
VILIFHCEFSSERGPRMCRFIRERDRAVNDYPSLYYPEMYILKGGYKEFFPQHPNFCEPQ
DYRPMNHEAFKDELKTFRLKTRSWAGERSRRELCSRLQDQ
Function
Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression. Directly dephosphorylates CDK1 and stimulates its kinase activity. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. The three isoforms seem to have a different level of activity.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Cell cycle (hsa04110 )
Progesterone-mediated oocyte maturation (hsa04914 )
MicroR.s in cancer (hsa05206 )
Reactome Pathway
Cyclin A (R-HSA-69656 )
Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's disease models (R-HSA-8862803 )
Cyclin A/B1/B2 associated events during G2/M transition (R-HSA-69273 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
29 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of M-phase inducer phosphatase 2 (CDC25B). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of M-phase inducer phosphatase 2 (CDC25B). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [9]
Progesterone DMUY35B Approved Progesterone increases the expression of M-phase inducer phosphatase 2 (CDC25B). [10]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [11]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [12]
Ethanol DMDRQZU Approved Ethanol increases the expression of M-phase inducer phosphatase 2 (CDC25B). [13]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [14]
Simvastatin DM30SGU Approved Simvastatin affects the expression of M-phase inducer phosphatase 2 (CDC25B). [15]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of M-phase inducer phosphatase 2 (CDC25B). [16]
Silymarin DMXBYQR Phase 4 Silymarin decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [17]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [18]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [19]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of M-phase inducer phosphatase 2 (CDC25B). [20]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [21]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of M-phase inducer phosphatase 2 (CDC25B). [22]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [24]
AT7519 DMCE08M Phase 1 AT7519 decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of M-phase inducer phosphatase 2 (CDC25B). [21]
Glyphosate DM0AFY7 Investigative Glyphosate increases the expression of M-phase inducer phosphatase 2 (CDC25B). [30]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde decreases the activity of M-phase inducer phosphatase 2 (CDC25B). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Drug(s)
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of M-phase inducer phosphatase 2 (CDC25B). [23]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of M-phase inducer phosphatase 2 (CDC25B). [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of M-phase inducer phosphatase 2 (CDC25B). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of M-phase inducer phosphatase 2 (CDC25B). [29]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of M-phase inducer phosphatase 2 (CDC25B). [28]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene. 2010 May 20;29(20):2983-95. doi: 10.1038/onc.2010.47. Epub 2010 Mar 8.
7 Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 2000 Jun 1;60(11):3065-71.
8 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 Progestins regulate genes that can elicit both proliferative and antiproliferative effects in breast cancer cells. Oncol Rep. 2008 Jun;19(6):1627-34.
11 Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer. 2006 May 18;5:20. doi: 10.1186/1476-4598-5-20.
12 Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci. 2023 Feb 17;191(2):227-238. doi: 10.1093/toxsci/kfac131.
13 Effects of acute ethanol treatment on NCCIT cells and NCCIT cell-derived embryoid bodies (EBs). Toxicol In Vitro. 2010 Sep;24(6):1696-704. doi: 10.1016/j.tiv.2010.05.017. Epub 2010 May 26.
14 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
15 Temporal gene expression analysis of human coronary artery endothelial cells treated with Simvastatin. Gene Expr. 2008;14(4):229-39. doi: 10.3727/105221608786883834.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int J Cancer. 2008 Jul 1;123(1):41-50. doi: 10.1002/ijc.23485.
18 Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007 Dec 15;67(24):12007-17. doi: 10.1158/0008-5472.CAN-07-2464.
19 Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray. Mol Carcinog. 2006 Dec;45(12):943-56.
20 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
21 Gene expression-signature of belinostat in cell lines is specific for histone deacetylase inhibitor treatment, with a corresponding signature in xenografts. Anticancer Drugs. 2009 Sep;20(8):682-92.
22 Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis. Environ Mol Mutagen. 2009 Jan;50(1):46-59.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
24 The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene. 2016 Feb 18;35(7):833-45.
25 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
26 CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide. Iran J Pharm Res. 2019 Fall;18(Suppl1):119-131. doi: 10.22037/ijpr.2019.112560.13827.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
29 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
30 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
31 Synthesis and biological evaluation of dimeric cinnamaldehydes as potent antitumor agents. Bioorg Med Chem. 2006 Apr 15;14(8):2498-506. doi: 10.1016/j.bmc.2005.11.028. Epub 2005 Dec 15.