General Information of Drug Off-Target (DOT) (ID: OT1RWFV0)

DOT Name 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D)
Synonyms EC 3.1.4.53; DPDE3; PDE43; cAMP-specific phosphodiesterase 4D
Gene Name PDE4D
Related Disease
Acrodysostosis 1 with or without hormone resistance ( )
Acrodysostosis 2 with or without hormone resistance ( )
Acrodysostosis ( )
Chromosome 5q12 deletion syndrome ( )
Obsolete acrodysostosis with multiple hormone resistance ( )
UniProt ID
PDE4D_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1E9K ; 1MKD ; 1OYN ; 1PTW ; 1Q9M ; 1TB7 ; 1TBB ; 1XOM ; 1XON ; 1XOQ ; 1XOR ; 1Y2B ; 1Y2C ; 1Y2D ; 1Y2E ; 1Y2K ; 1ZKN ; 2FM0 ; 2FM5 ; 2PW3 ; 2QYN ; 3G4G ; 3G4I ; 3G4K ; 3G4L ; 3G58 ; 3IAD ; 3IAK ; 3K4S ; 3SL3 ; 3SL4 ; 3SL5 ; 3SL6 ; 3SL8 ; 3V9B ; 4OGB ; 4W1O ; 4WCU ; 5K1I ; 5K32 ; 5LBO ; 5TKB ; 5WH5 ; 5WH6 ; 5WQA ; 6AKR ; 6BOJ ; 6F6U ; 6F8R ; 6F8T ; 6F8U ; 6F8V ; 6F8W ; 6F8X ; 6FDC ; 6FDI ; 6FE7 ; 6FEB ; 6FET ; 6FT0 ; 6FTA ; 6FTW ; 6FW3 ; 6HWO ; 6IAG ; 6IBF ; 6IM6 ; 6IMB ; 6IMD ; 6IMI ; 6IMO ; 6IMR ; 6IMT ; 6IND ; 6INK ; 6INM ; 6KJZ ; 6KK0 ; 6LRM ; 6NJH ; 6NJI ; 6NJJ ; 6RCW ; 6ZBA ; 7A8Q ; 7A9V ; 7AAG ; 7AB9 ; 7ABD ; 7ABE ; 7ABJ ; 7AY6 ; 7B9H ; 7CBJ ; 7CBQ ; 7F2K ; 7F2L ; 7F2M ; 7W4X ; 7W4Y ; 7XAA ; 7XAB ; 7XBB ; 7YQF ; 7YSX ; 8K4C ; 8K4H ; 8W4Q ; 8W4R
EC Number
3.1.4.53
Pfam ID
PF18100 ; PF00233
Sequence
MEAEGSSAPARAGSGEGSDSAGGATLKAPKHLWRHEQHHQYPLRQPQFRLLHPHHHLPPP
PPPSPQPQPQCPLQPPPPPPLPPPPPPPGAARGRYASSGATGRVRHRGYSDTERYLYCRA
MDRTSYAVETGHRPGLKKSRMSWPSSFQGLRRFDVDNGTSAGRSPLDPMTSPGSGLILQA
NFVHSQRRESFLYRSDSDYDLSPKSMSRNSSIASDIHGDDLIVTPFAQVLASLRTVRNNF
AALTNLQDRAPSKRSPMCNQPSINKATITEEAYQKLASETLEELDWCLDQLETLQTRHSV
SEMASNKFKRMLNRELTHLSEMSRSGNQVSEFISNTFLDKQHEVEIPSPTQKEKEKKKRP
MSQISGVKKLMHSSSLTNSSIPRFGVKTEQEDVLAKELEDVNKWGLHVFRIAELSGNRPL
TVIMHTIFQERDLLKTFKIPVDTLITYLMTLEDHYHADVAYHNNIHAADVVQSTHVLLST
PALEAVFTDLEILAAIFASAIHDVDHPGVSNQFLINTNSELALMYNDSSVLENHHLAVGF
KLLQEENCDIFQNLTKKQRQSLRKMVIDIVLATDMSKHMNLLADLKTMVETKKVTSSGVL
LLDNYSDRIQVLQNMVHCADLSNPTKPLQLYRQWTDRIMEEFFRQGDRERERGMEISPMC
DKHNASVEKSQVGFIDYIVHPLWETWADLVHPDAQDILDTLEDNREWYQSTIPQSPSPAP
DDPEEGRQGQTEKFQFELTLEEDGESDTEKDSGSQVEEDTSCSDSKTLCTQDSESTEIPL
DEQVEEEAVGEEEESQPEACVIDDRSPDT
Function Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.
Tissue Specificity
Expressed in colonic epithelial cells (at protein level). Widespread; most abundant in skeletal muscle.; [Isoform 6]: Detected in brain.; [Isoform 8]: Detected in brain, placenta, lung and kidney.; [Isoform 7]: Detected in heart and skeletal muscle.
KEGG Pathway
Purine metabolism (hsa00230 )
Metabolic pathways (hsa01100 )
cAMP sig.ling pathway (hsa04024 )
Parathyroid hormone synthesis, secretion and action (hsa04928 )
Morphine addiction (hsa05032 )
Reactome Pathway
G alpha (s) signalling events (R-HSA-418555 )
DARPP-32 events (R-HSA-180024 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acrodysostosis 1 with or without hormone resistance DISMLLJ7 Definitive Autosomal dominant [1]
Acrodysostosis 2 with or without hormone resistance DIS6N0DS Strong Autosomal dominant [2]
Acrodysostosis DISSV94Z Supportive Autosomal dominant [1]
Chromosome 5q12 deletion syndrome DISIYKUH Supportive Unknown [3]
Obsolete acrodysostosis with multiple hormone resistance DIS6U70H Supportive Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Gemcitabine DMSE3I7 Approved 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D) increases the Neutropenia ADR of Gemcitabine. [30]
Mitoxantrone DMM39BF Approved 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D) affects the response to substance of Mitoxantrone. [31]
Methamphetamine DMPM4SK Approved 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D) affects the response to substance of Methamphetamine. [32]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [12]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [13]
Panobinostat DM58WKG Approved Panobinostat increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [14]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [16]
Rifampicin DM5DSFZ Approved Rifampicin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [17]
Roflumilast DMPGHY8 Approved Roflumilast decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [18]
DNCB DMDTVYC Phase 2 DNCB increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [19]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [21]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [22]
Cilomilast DMHSM7I Discontinued in Phase 3 Cilomilast decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [23]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [24]
Trequinsin DMQRSMD Terminated Trequinsin decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [27]
Forskolin DM6ITNG Investigative Forskolin increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [10]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [20]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of 3',5'-cyclic-AMP phosphodiesterase 4D (PDE4D). [28]
------------------------------------------------------------------------------------

References

1 Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012 Apr 6;90(4):740-5. doi: 10.1016/j.ajhg.2012.03.003. Epub 2012 Mar 29.
2 Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis. Hum Mutat. 2013 Jan;34(1):97-102. doi: 10.1002/humu.22222. Epub 2012 Nov 9.
3 Different mutations in PDE4D associated with developmental disorders with mirror phenotypes. J Med Genet. 2014 Jan;51(1):45-54. doi: 10.1136/jmedgenet-2013-101937. Epub 2013 Nov 7.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
16 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
17 Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet. 2014;29(4):333-40.
18 Dynamic activation of cystic fibrosis transmembrane conductance regulator by type 3 and type 4D phosphodiesterase inhibitors. J Pharmacol Exp Ther. 2005 Aug;314(2):846-54. doi: 10.1124/jpet.105.083519. Epub 2005 May 18.
19 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
22 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
23 Pharmacological profile of a novel phosphodiesterase 4 inhibitor, 4-(8-benzo[1,2,5]oxadiazol-5-yl-[1,7]naphthyridin-6-yl)-benzoic acid (NVP-ABE171), a 1,7-naphthyridine derivative, with anti-inflammatory activities. J Pharmacol Exp Ther. 2002 Apr;301(1):241-8. doi: 10.1124/jpet.301.1.241.
24 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
25 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
29 Differential expression of genes coding for EGF-like factors and ADAMTS1 following gonadotropin stimulation in normal and transformed human granulosa cells. Biochem Biophys Res Commun. 2005 Aug 5;333(3):935-43. doi: 10.1016/j.bbrc.2005.04.177.
30 Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci. 2013 Aug;104(8):1074-82. doi: 10.1111/cas.12186. Epub 2013 Jun 10.
31 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
32 Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch Gen Psychiatry. 2008 Mar;65(3):345-55. doi: 10.1001/archpsyc.65.3.345.