General Information of Drug Off-Target (DOT) (ID: OT2184XU)

DOT Name CD9 antigen (CD9)
Synonyms 5H9 antigen; Cell growth-inhibiting gene 2 protein; Leukocyte antigen MIC3; Motility-related protein; MRP-1; Tetraspanin-29; Tspan-29; p24; CD antigen CD9
Gene Name CD9
UniProt ID
CD9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6K4J; 6RLO; 6RLR; 6Z1V; 6Z20
Pfam ID
PF00335
Sequence
MPVKGGTKCIKYLLFGFNFIFWLAGIAVLAIGLWLRFDSQTKSIFEQETNNNNSSFYTGV
YILIGAGALMMLVGFLGCCGAVQESQCMLGLFFGFLLVIFAIEIAAAIWGYSHKDEVIKE
VQEFYKDTYNKLKTKDEPQRETLKAIHYALNCCGLAGGVEQFISDICPKKDVLETFTVKS
CPDAIKEVFDNKFHIIGAVGIGIAVVMIFGMIFSMILCCAIRRNREMV
Function
Integral membrane protein associated with integrins, which regulates different processes, such as sperm-egg fusion, platelet activation and aggregation, and cell adhesion. Present at the cell surface of oocytes and plays a key role in sperm-egg fusion, possibly by organizing multiprotein complexes and the morphology of the membrane required for the fusion. In myoblasts, associates with CD81 and PTGFRN and inhibits myotube fusion during muscle regeneration. In macrophages, associates with CD81 and beta-1 and beta-2 integrins, and prevents macrophage fusion into multinucleated giant cells specialized in ingesting complement-opsonized large particles. Also prevents the fusion between mononuclear cell progenitors into osteoclasts in charge of bone resorption. Acts as a receptor for PSG17. Involved in platelet activation and aggregation. Regulates paranodal junction formation. Involved in cell adhesion, cell motility and tumor metastasis.
Tissue Specificity Detected in platelets (at protein level) . Expressed by a variety of hematopoietic and epithelial cells .
KEGG Pathway
Hematopoietic cell lineage (hsa04640 )
Reactome Pathway
Acrosome Reaction and Sperm (R-HSA-1300645 )
Uptake and function of diphtheria toxin (R-HSA-5336415 )
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved CD9 antigen (CD9) decreases the response to substance of Arsenic trioxide. [26]
Mitomycin DMH0ZJE Approved CD9 antigen (CD9) affects the response to substance of Mitomycin. [27]
Brilinta DMBR01X Approved CD9 antigen (CD9) increases the Peripheral sensory neuropathy ADR of Brilinta. [28]
NAPQI DM8F5LR Investigative CD9 antigen (CD9) affects the response to substance of NAPQI. [29]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of CD9 antigen (CD9). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of CD9 antigen (CD9). [9]
------------------------------------------------------------------------------------
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of CD9 antigen (CD9). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of CD9 antigen (CD9). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of CD9 antigen (CD9). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of CD9 antigen (CD9). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of CD9 antigen (CD9). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of CD9 antigen (CD9). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of CD9 antigen (CD9). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of CD9 antigen (CD9). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of CD9 antigen (CD9). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of CD9 antigen (CD9). [12]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of CD9 antigen (CD9). [13]
Menadione DMSJDTY Approved Menadione affects the expression of CD9 antigen (CD9). [14]
Panobinostat DM58WKG Approved Panobinostat increases the expression of CD9 antigen (CD9). [13]
Bortezomib DMNO38U Approved Bortezomib increases the expression of CD9 antigen (CD9). [15]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of CD9 antigen (CD9). [16]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of CD9 antigen (CD9). [13]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of CD9 antigen (CD9). [17]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of CD9 antigen (CD9). [18]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of CD9 antigen (CD9). [13]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of CD9 antigen (CD9). [19]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of CD9 antigen (CD9). [2]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of CD9 antigen (CD9). [20]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of CD9 antigen (CD9). [21]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of CD9 antigen (CD9). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of CD9 antigen (CD9). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of CD9 antigen (CD9). [23]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of CD9 antigen (CD9). [24]
CATECHIN DMY38SB Investigative CATECHIN increases the expression of CD9 antigen (CD9). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity. Biochim Biophys Acta. 2005 Oct 15;1731(1):48-56. doi: 10.1016/j.bbaexp.2005.08.006. Epub 2005 Sep 1.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
16 Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model. BMC Urol. 2005 Mar 24;5:5.
17 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
18 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
19 p53-mediated differentiation of the erythroleukemia cell line K562. Cell Growth Differ. 2000 Jun;11(6):315-24.
20 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
25 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.
26 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.
27 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
28 Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet. 2013 Sep;50(9):599-605. doi: 10.1136/jmedgenet-2012-101466. Epub 2013 Jun 17.
29 Acetaminophen-NAPQI hepatotoxicity: a cell line model system genome-wide association study. Toxicol Sci. 2011 Mar;120(1):33-41. doi: 10.1093/toxsci/kfq375. Epub 2010 Dec 22.