General Information of Drug Off-Target (DOT) (ID: OT2YPT7O)

DOT Name Unconventional myosin-XVIIIa (MYO18A)
Synonyms Molecule associated with JAK3 N-terminus; MAJN; Myosin containing a PDZ domain; Surfactant protein receptor SP-R210; SP-R210
Gene Name MYO18A
Related Disease
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Hepatitis C virus infection ( )
Pneumonia ( )
UniProt ID
MY18A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00063 ; PF01576 ; PF00595
Sequence
MFNLMKKDKDKDGGRKEKKEKKEKKERMSAAELRSLEEMSLRRGFFNLNRSSKRESKTRL
EISNPIPIKVASGSDLHLTDIDSDSNRGSVILDSGHLSTASSSDDLKGEEGSFRGSVLQR
AAKFGSLAKQNSQMIVKRFSFSQRSRDESASETSTPSEHSAAPSPQVEVRTLEGQLVQHP
GPGIPRPGHRSRAPELVTKKFPVDLRLPPVVPLPPPTLRELELQRRPTGDFGFSLRRTTM
LDRGPEGQACRRVVHFAEPGAGTKDLALGLVPGDRLVEINGHNVESKSRDEIVEMIRQSG
DSVRLKVQPIPELSELSRSWLRSGEGPRREPSDAKTEEQIAAEEAWNETEKVWLVHRDGF
SLASQLKSEELNLPEGKVRVKLDHDGAILDVDEDDVEKANAPSCDRLEDLASLVYLNESS
VLHTLRQRYGASLLHTYAGPSLLVLGPRGAPAVYSEKVMHMFKGCRREDMAPHIYAVAQT
AYRAMLMSRQDQSIILLGSSGSGKTTSCQHLVQYLATIAGISGNKVFSVEKWQALYTLLE
AFGNSPTIINGNATRFSQILSLDFDQAGQVASASIQTMLLEKLRVARRPASEATFNVFYY
LLACGDGTLRTELHLNHLAENNVFGIVPLAKPEEKQKAAQQFSKLQAAMKVLGISPDEQK
ACWFILAAIYHLGAAGATKEAAEAGRKQFARHEWAQKAAYLLGCSLEELSSAIFKHQHKG
GTLQRSTSFRQGPEESGLGDGTGPKLSALECLEGMAAGLYSELFTLLVSLVNRALKSSQH
SLCSMMIVDTPGFQNPEQGGSARGASFEELCHNYTQDRLQRLFHERTFVQELERYKEENI
ELAFDDLEPPTDDSVAAVDQASHQSLVRSLARTDEARGLLWLLEEEALVPGASEDTLLER
LFSYYGPQEGDKKGQSPLLHSSKPHHFLLGHSHGTNWVEYNVTGWLNYTKQNPATQNAPR
LLQDSQKKIISNLFLGRAGSATVLSGSIAGLEGGSQLALRRATSMRKTFTTGMAAVKKKS
LCIQMKLQVDALIDTIKKSKLHFVHCFLPVAEGWAGEPRSASSRRVSSSSELDLPSGDHC
EAGLLQLDVPLLRTQLRGSRLLDAMRMYRQGYPDHMVFSEFRRRFDVLAPHLTKKHGRNY
IVVDERRAVEELLECLDLEKSSCCMGLSRVFFRAGTLARLEEQRDEQTSRNLTLFQAACR
GYLARQHFKKRKIQDLAIRCVQKNIKKNKGVKDWPWWKLFTTVRPLIEVQLSEEQIRNKD
EEIQQLRSKLEKAEKERNELRLNSDRLESRISELTSELTDERNTGESASQLLDAETAERL
RAEKEMKELQTQYDALKKQMEVMEMEVMEARLIRAAEINGEVDDDDAGGEWRLKYERAVR
EVDFTKKRLQQEFEDKLEVEQQNKRQLERRLGDLQADSEESQRALQQLKKKCQRLTAELQ
DTKLHLEGQQVRNHELEKKQRRFDSELSQAHEEAQREKLQREKLQREKDMLLAEAFSLKQ
QLEEKDMDIAGFTQKVVSLEAELQDISSQESKDEASLAKVKKQLRDLEAKVKDQEEELDE
QAGTIQMLEQAKLRLEMEMERMRQTHSKEMESRDEEVEEARQSCQKKLKQMEVQLEEEYE
DKQKVLREKRELEGKLATLSDQVNRRDFESEKRLRKDLKRTKALLADAQLMLDHLKNSAP
SKREIAQLKNQLEESEFTCAAAVKARKAMEVEIEDLHLQIDDIAKAKTALEEQLSRLQRE
KNEIQNRLEEDQEDMNELMKKHKAAVAQASRDLAQINDLQAQLEEANKEKQELQEKLQAL
QSQVEFLEQSMVDKSLVSRQEAKIRELETRLEFERTQVKRLESLASRLKENMEKLTEERD
QRIAAENREKEQNKRLQRQLRDTKEEMGELARKEAEASRKKHELEMDLESLEAANQSLQA
DLKLAFKRIGDLQAAIEDEMESDENEDLINSLQDMVTKYQKRKNKLEGDSDVDSELEDRV
DGVKSWLSKNKGPSKAASDDGSLKSSSPTSYWKSLAPDRSDDEHDPLDNTSRPRYSHSYL
SDSDTEAKLTETNA
Function
May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus. Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration. May be involved in the maintenance of the stromal cell architectures required for cell to cell contact. Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking. Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages. Strongly enhances natural killer cell cytotoxicity.
KEGG Pathway
Motor proteins (hsa04814 )
Reactome Pathway
Signaling by FGFR1 in disease (R-HSA-5655302 )
Signaling by FLT3 fusion proteins (R-HSA-9703465 )
Signaling by cytosolic FGFR1 fusion mutants (R-HSA-1839117 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Hepatitis C virus infection DISQ0M8R Strong Posttranslational Modification [3]
Pneumonia DIS8EF3M Limited Biomarker [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Unconventional myosin-XVIIIa (MYO18A). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Unconventional myosin-XVIIIa (MYO18A). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Unconventional myosin-XVIIIa (MYO18A). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Unconventional myosin-XVIIIa (MYO18A). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Unconventional myosin-XVIIIa (MYO18A). [21]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Unconventional myosin-XVIIIa (MYO18A). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Unconventional myosin-XVIIIa (MYO18A). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Unconventional myosin-XVIIIa (MYO18A). [8]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [10]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [11]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [12]
Selenium DM25CGV Approved Selenium increases the expression of Unconventional myosin-XVIIIa (MYO18A). [13]
Menthol DMG2KW7 Approved Menthol increases the expression of Unconventional myosin-XVIIIa (MYO18A). [14]
Aminoglutethimide DMWFHMZ Approved Aminoglutethimide decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [15]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [16]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Unconventional myosin-XVIIIa (MYO18A). [17]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Unconventional myosin-XVIIIa (MYO18A). [8]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Unconventional myosin-XVIIIa (MYO18A). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Unconventional myosin-XVIIIa (MYO18A). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 A three-way translocation of MLL, MLLT11, and the novel reciprocal partner gene MYO18A in a child with acute myeloid leukemia.Cancer Genet. 2012 May;205(5):261-5. doi: 10.1016/j.cancergen.2012.02.006.
2 Emerging themes of regulation at the Golgi.Curr Opin Cell Biol. 2017 Apr;45:17-23. doi: 10.1016/j.ceb.2017.01.004. Epub 2017 Feb 16.
3 Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion.J Biol Chem. 2012 Aug 10;287(33):27637-47. doi: 10.1074/jbc.M112.346569. Epub 2012 Jun 28.
4 Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.J Biol Chem. 2011 Feb 11;286(6):4854-70. doi: 10.1074/jbc.M110.125567. Epub 2010 Dec 1.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 DNA methylation inhibits p53-mediated survivin repression. Oncogene. 2009 May 14;28(19):2046-50. doi: 10.1038/onc.2009.62. Epub 2009 Apr 13.
13 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
14 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
15 Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: role of myeloperoxidase and arylamine free radicals. Chem Biol Interact. 2015 Sep 5;239:129-38.
16 Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer. 2003 Mar 20;104(2):204-12.
17 Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 2008 Sep;39(3):312-23. doi: 10.1165/rcmb.2008-0012OC. Epub 2008 Apr 17.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.