General Information of Drug Off-Target (DOT) (ID: OT4BY3W4)

DOT Name Lysophosphatidic acid receptor 6 (LPAR6)
Synonyms LPA receptor 6; LPA-6; Oleoyl-L-alpha-lysophosphatidic acid receptor; P2Y purinoceptor 5; P2Y5; Purinergic receptor 5; RB intron encoded G-protein coupled receptor
Gene Name LPAR6
Related Disease
Hypotrichosis 8 ( )
Hypotrichosis simplex ( )
Isolated familial wooly hair disorder ( )
UniProt ID
LPAR6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00001
Sequence
MVSVNSSHCFYNDSFKYTLYGCMFSMVFVLGLISNCVAIYIFICVLKVRNETTTYMINLA
MSDLLFVFTLPFRIFYFTTRNWPFGDLLCKISVMLFYTNMYGSILFLTCISVDRFLAIVY
PFKSKTLRTKRNAKIVCTGVWLTVIGGSAPAVFVQSTHSQGNNASEACFENFPEATWKTY
LSRIVIFIEIVGFFIPLILNVTCSSMVLKTLTKPVTLSRSKINKTKVLKMIFVHLIIFCF
CFVPYNINLILYSLVRTQTFVNCSVVAAVRTMYPITLCIAVSNCCFDPIVYYFTSDTIQN
SIKMKNWSVRRSDFRFSEVHGAENFIQHNLQTLKSKIFDNESAA
Function Binds to oleoyl-L-alpha-lysophosphatidic acid (LPA). Intracellular cAMP is involved in the receptor activation. Important for the maintenance of hair growth and texture.
Tissue Specificity
Expressed ubiquitously, including in skin and hair follicle cells. Detected in both Henle's and Huxley's layers of the inner root sheath of the hair follicle and in suprabasal layers of the epidermis (at protein level). Expressed at low levels in peripheral blood leukocytes.
KEGG Pathway
Phospholipase D sig.ling pathway (hsa04072 )
Neuroactive ligand-receptor interaction (hsa04080 )
PI3K-Akt sig.ling pathway (hsa04151 )
Pathways in cancer (hsa05200 )
Reactome Pathway
P2Y receptors (R-HSA-417957 )
G alpha (q) signalling events (R-HSA-416476 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypotrichosis 8 DIS2FX7S Strong Autosomal recessive [1]
Hypotrichosis simplex DIS8WHDJ Supportive Autosomal dominant [2]
Isolated familial wooly hair disorder DISTWYN7 Supportive Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Lysophosphatidic acid receptor 6 (LPAR6). [4]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Lysophosphatidic acid receptor 6 (LPAR6). [10]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [8]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Lysophosphatidic acid receptor 6 (LPAR6). [13]
Marinol DM70IK5 Approved Marinol increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [14]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [15]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [12]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [16]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Lysophosphatidic acid receptor 6 (LPAR6). [17]
Gemcitabine DMSE3I7 Approved Gemcitabine decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [18]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [21]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [22]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Lysophosphatidic acid receptor 6 (LPAR6). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Novel mutations in G protein-coupled receptor gene (P2RY5) in families with autosomal recessive hypotrichosis (LAH3). Hum Genet. 2008 Jun;123(5):515-9. doi: 10.1007/s00439-008-0507-7. Epub 2008 May 7.
3 Mutations in the LPAR6 and LIPH genes underlie autosomal recessive hypotrichosis/woolly hair in 17 consanguineous families from Pakistan. Clin Exp Dermatol. 2011 Aug;36(6):652-4. doi: 10.1111/j.1365-2230.2011.04014.x. Epub 2011 Mar 21.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
14 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
15 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
16 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
17 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
20 Transcriptomic?pathway?and?benchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicol In Vitro. 2021 Apr;72:105097. doi: 10.1016/j.tiv.2021.105097. Epub 2021 Jan 18.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.