General Information of Drug Off-Target (DOT) (ID: OT4SBHI8)

DOT Name Purine nucleoside phosphorylase LACC1 (LACC1)
Synonyms
EC 2.4.2.1; Adenosine deaminase LACC1; EC 3.5.4.4; Fatty acid metabolism-immunity nexus; Guanosine phosphorylase LACC1; Laccase domain-containing protein 1; S-methyl-5'-thioadenosine phosphorylase LACC1; EC 2.4.2.28
Gene Name LACC1
Related Disease
Arthritis ( )
Inflammatory bowel disease ( )
Juvenile arthritis due to defect in LACC1 ( )
Juvenile idiopathic arthritis ( )
Majeed syndrome ( )
Multiple sclerosis ( )
Ulcerative colitis ( )
Asthma ( )
Crohn disease ( )
Inflammation ( )
Leprosy ( )
UniProt ID
LACC1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.4.2.1; 2.4.2.28; 3.5.4.4
Pfam ID
PF02578
Sequence
MAEAVLIDLFGLKLNSQKNCHQTLLKTLNAVQYHHAAKAKFLCIMCCSNISYERDGEQDN
CEIETSNGLSALLEEFEIVSCPSMAATLYTIKQKIDEKNLSSIKVIVPRHRKTLMKAFID
QLFTDVYNFEFEDLQVTFRGGLFKQSIEINVITAQELRGIQNEIETFLRSLPALRGKLTI
ITSSLIPDIFIHGFTTRTGGISYIPTLSSFNLFSSSKRRDPKVVVQENLRRLANAAGFNV
EKFYRIKTHHSNDIWIMGRKEPDSYDGITTNQRGVTIAALGADCIPIVFADPVKKACGVA
HAGWKGTLLGVAMATVNAMIAEYGCSLEDIVVVLGPSVGPCCFTLPRESAEAFHNLHPAC
VQLFDSPNPCIDIRKATRILLEQGGILPQNIQDQNQDLNLCTSCHPDKFFSHVRDGLNFG
TQIGFISIKE
Function
Purine nucleoside enzyme that catalyzes the phosphorolysis of adenosine, guanosine and inosine nucleosides, yielding D-ribose 1-phosphate and the respective free bases, adenine, guanine and hypoxanthine. Also catalyzes the phosphorolysis of S-methyl-5'-thioadenosine into adenine and S-methyl-5-thio-alpha-D-ribose 1-phosphate. Also has adenosine deaminase activity. Acts as a regulator of innate immunity in macrophages by modulating the purine nucleotide metabolism, thereby regulating the metabolic function and bioenergetic state of macrophages. Enables a purine nucleotide cycle between adenosine and inosine monophosphate and adenylosuccinate that prevents cytoplasmic acidification and balances the cytoplasmic-mitochondrial redox interface. The purine nucleotide cycle consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. Participates in pattern recognition receptor (PRR)-induced cytokines in macrophages: associates with the NOD2-signaling complex and promotes optimal NOD2-induced signaling, cytokine secretion and bacterial clearance. Localizes to the endoplasmic reticulum upon PRR stimulation of macrophages and associates with endoplasmic reticulum-stress sensors, promoting the endoplasmic reticulum unfolded protein response (UPR). Does not show laccase activity.
Tissue Specificity Ubiquitously expressed, with higher expression levels in immune-related tissues such as lymph nodes and spleen . Expressed in both intestinal and peripheral myeloid-derived cells .
KEGG Pathway
Purine metabolism (hsa00230 )
Cysteine and methionine metabolism (hsa00270 )
Metabolic pathways (hsa01100 )
Nucleotide metabolism (hsa01232 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arthritis DIST1YEL Strong Biomarker [1]
Inflammatory bowel disease DISGN23E Strong Genetic Variation [1]
Juvenile arthritis due to defect in LACC1 DISLMBNW Strong Autosomal recessive [2]
Juvenile idiopathic arthritis DISQZGBV Strong Biomarker [3]
Majeed syndrome DIS8AI2U Strong Biomarker [4]
Multiple sclerosis DISB2WZI Strong Genetic Variation [5]
Ulcerative colitis DIS8K27O Strong Genetic Variation [6]
Asthma DISW9QNS moderate Genetic Variation [7]
Crohn disease DIS2C5Q8 Limited Genetic Variation [8]
Inflammation DISJUQ5T Limited Genetic Variation [9]
Leprosy DISAA4UI Limited Genetic Variation [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Purine nucleoside phosphorylase LACC1 (LACC1). [10]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [11]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [12]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [13]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [14]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [15]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [16]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [17]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [18]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [19]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [18]
APR-246 DMNFADH Phase 2 APR-246 affects the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [21]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Purine nucleoside phosphorylase LACC1 (LACC1). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation.J Immunol. 2019 Jan 1;202(1):183-193. doi: 10.4049/jimmunol.1800636. Epub 2018 Dec 3.
2 Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2015 Jan;67(1):288-95. doi: 10.1002/art.38877.
3 Biallelic loss-of-function LACC1/FAMIN Mutations Presenting as Rheumatoid Factor-Negative Polyarticular Juvenile Idiopathic Arthritis.Sci Rep. 2019 Mar 14;9(1):4579. doi: 10.1038/s41598-019-40874-2.
4 Pattern and diagnostic evaluation of systemic autoinflammatory diseases other than familial Mediterranean fever among Arab children: a multicenter study from the Pediatric Rheumatology Arab Group (PRAG).Rheumatol Int. 2020 Jan;40(1):49-56. doi: 10.1007/s00296-019-04478-3. Epub 2019 Nov 18.
5 Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci.Ann Neurol. 2011 Dec;70(6):897-912. doi: 10.1002/ana.22609.
6 Functional Analyses of the Crohn's Disease Risk Gene LACC1.PLoS One. 2016 Dec 13;11(12):e0168276. doi: 10.1371/journal.pone.0168276. eCollection 2016.
7 Association between ORMDL3, IL1RL1 and a deletion on chromosome 17q21 with asthma risk in Australia.Eur J Hum Genet. 2011 Apr;19(4):458-64. doi: 10.1038/ejhg.2010.191. Epub 2010 Dec 8.
8 Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1.Int Immunol. 2018 Apr 25;30(5):205-213. doi: 10.1093/intimm/dxy021.
9 Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes.Nat Commun. 2017 Jun 8;8:15614. doi: 10.1038/ncomms15614.
10 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
11 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
12 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
13 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
14 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
15 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
16 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
17 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
20 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.